The following technical report is available from http://aib.informatik.rwth-aachen.de:
Algorithmic Differentiation of Numerical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems of Linear Equations Uwe Naumann and Johannes Lotz AIB 2012-10
We consider the Algorithmic Differentiation (also know as Automatic Differentiation; AD) of numerical simulation programs that contain calls to direct solvers for systems of n linear equations. AD of the linear solvers yields a local overhead of O(n^3) for the computation of directional derivatives or adjoints of the solution vector with respect to the system matrix and right-hand side. The local memory requirement is of the same order in adjoint mode AD. Mathematical insight yields a reduction of the local computational complexity to O(n^2). The memory overhead can be reduced to at least O(n^2) in adjoint mode. We derive efficient tangent-linear and adjoint direct linear solvers and illustrate their use within tangent-linear and adjoint versions of the enclosing numerical simulation.
tr-announce@lists.rwth-aachen.de