+**********************************************************************
*
*
* Einladung
*
*
*
* Informatik-Oberseminar
*
*
*
+**********************************************************************
Zeit: Freitag, 12. Juli 2019, 10.00 Uhr
Ort: Informatikzentrum, E3, Raum 9222
Referent: Dipl.-Inform. Malte Nuhn
Thema: Unsupervised Training with Applications in Natural Language
Processing//
Abstract:
The state-of-the-art algorithms for various natural language processing
tasks require large amounts of labeled training data. At the same time,
obtaining labeled data of high quality is often the most costly step in
setting up natural language processing systems.Opposed to this,
unlabeled data is much cheaper to obtain and available in larger
amounts.Currently, only few training algorithms make use of unlabeled
data. In practice, training with only unlabeled data is not performed at
all. In this thesis, we study how unlabeled data can be used to train a
variety of models used in natural language processing. In particular, we
study models applicable to solving substitution ciphers, spelling
correction, and machine translation. This thesis lays the groundwork for
unsupervised training by presenting and analyzing the corresponding
models and unsupervised training problems in a consistent manner.We show
that the unsupervised training problem that occurs when breaking
one-to-one substitution ciphers is equivalent to the quadratic
assignment problem (QAP) if a bigram language model is incorporated and
therefore NP-hard. Based on this analysis, we present an effective
algorithm for unsupervised training for deterministic substitutions. In
the case of English one-to-one substitution ciphers, we show that our
novel algorithm achieves results close to human performance, as
presented in [Shannon 49].
Also, with this algorithm, we present, to the best of our knowledge, the
first automatic decipherment of the second part of the Beale
ciphers.Further, for the task of spelling correction, we work out the
details of the EM algorithm [Dempster & Laird + 77] and experimentally
show that the error rates achieved using purely unsupervised training
reach those of supervised training.For handling large vocabularies, we
introduce a novel model initialization as well as multiple training
procedures that significantly speed up training without hurting the
performance of the resulting models significantly.By incorporating an
alignment model, we further extend this model such that it can be
applied to the task of machine translation. We show that the true
lexical and alignment model parameters can be learned without any
labeled data: We experimentally show that the corresponding likelihood
function attains its maximum for the true model parameters if a
sufficient amount of unlabeled data is available. Further, for the
problem of spelling correction with symbol substitutions and local
swaps, we also show experimentally that the performance achieved with
purely unsupervised EM training reaches that of supervised training.
Finally, using the methods developed in this thesis, we present results
on an unsupervised training task for machine translation with a ten
times larger vocabulary than that of tasks investigated in previous work.
Es laden ein: die Dozentinnen und Dozenten der Informatik
_______________________________________________
--
--
Stephanie Jansen
Faculty of Mathematics, Computer Science and Natural Sciences
HLTPR - Human Language Technology and Pattern Recognition
RWTH Aachen University
Ahornstraße 55
D-52074 Aachen
Tel. Frau Jansen: +49 241 80-216 06
Tel. Frau Andersen: +49 241 80-216 01
Fax: +49 241 80-22219
sek(a)i6.informatik.rwth-aachen.de
www.hltpr.rwth-aachen.de
Tel: +49 241 80-216 01/06
Fax: +49 241 80-22219
sek(a)i6.informatik.rwth-aachen.de
www.hltpr.rwth-aachen.de
+**********************************************************************
*
*
* Einladung
*
*
*
* Informatik-Oberseminar
*
*
*
+**********************************************************************
Zeit: Montag, 23. Maerz 2020, 10.00 Uhr
Ort: Raum 115, Rogowski-Gebaeude,
Referent: Markus Hoehnerbach M.Sc.
High-Performance and Automatic Computing
Thema: A Framework for the Vectorization of Molecular Dynamics Kernels
Abstract:
We introduce a domain-specific language (DSL) for many-body potentials, which are used in molecular dynamics (MD) simulations in the area of materials science. We also introduce a compiler to translate the DSL into high-performance code suitable for modern supercomputers.
We begin by studying ways to speedup up potentials on supercomputers using two case studies: The Tersoff and the AIREBO potentials. In both case studies, we identify a number of optimizations, both domain-specific and general, to achieve speedups of up to 5x; we also introduce a method to keep the resulting code performance portable.
During the AIREBO case study, we also discover that the existing code contains a number of errors. This experience motivates us to include the derivation step, the most error-prone step in manual optimization, in our automation effort.
After having identified beneficial optimization techniques, we create a ``potential compiler'', short PotC, which generates fully-usable performance-portable potential implementations from specifications written in our DSL. DSL code is significantly shorter (20x to 30x) than a manual code, reducing both manual work and opportunities to introduce bugs.
We present performance results on five different platforms: Three CPU platforms (Broadwell, Knights Landing, and Skylake) and two GPU platforms (Pascal and Volta). While the performance in some cases remains far below that of hand-written code, it also manages to match or exceed manually written implementations in other cases. For these cases, we achieve speedups of up to 9x compared to non-vectorized code.
Es laden ein: die Dozentinnen und Dozenten der Informatik
+**********************************************************************
*
*
* Einladung
*
*
*
* Informatik-Oberseminar
*
*
*
+**********************************************************************
Zeit: Montag, 16. März 2020, 10:45 Uhr
Ort: Raum 9222, Gebäude E3, Ahornstr. 55
Referentin: Sandra Kiefer, M.Sc.
Lehrstuhl Informatik 7
Thema: Power and Limits of the Weisfeiler-Leman Algorithm
Abstract:
The Weisfeiler-Leman (WL) algorithm is a fundamental combinatorial procedure used to classify graphs and other relational structures. Through its connections to many research areas such as logics and machine learning, surprising characterisations of the algorithm have been discovered. We combine some of these to obtain powerful proof techniques.
For every k, the k-dimensional version of the algorithm (k-WL) iteratively computes a stable colouring of the vertex k-tuples of the input graph. The larger k, the more powerful k-WL becomes with respect to the distinguishability of graphs.
We have studied two central parameters of the algorithm, its number of iterations until stabilisation and its dimension. The results enable a precise understanding of 1-WL, namely we have determined its iteration number and have developed a complete characterisation of the graphs for which 1-WL correctly decides isomorphism.
In higher dimensions, however, the situation is different. For example, it is often not clear at all how to decide if k-WL distinguishes two particular graphs. By our results, 3-WL identifies every planar graph, which drastically improves upon all previously known bounds. Generalising this insight, we obtain the first explicit parametrisation of the WL dimension by the Euler genus of the input graph.
Es laden ein: die Dozentinnen und Dozenten der Informatik