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Abstract

Magnetic particle imaging (MPI) is an emerging tomographic imaging technology that detects 

magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In 

order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging 

MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled 

setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for 

predicting the response of particles in an MPI relaxometer. These include a magnetization 

equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization 

equation which uses a �eld-dependent relaxation time developed by Martsenyuk, Raikher and 

Shliomis (MRSh). We compare the predictions from these models with measurements and 

with the predictions based on the Langevin function that assumes instantaneous magnetization 

response of the nanoparticles. The results show good qualitative and quantitative agreement 

between the ferrohydrodynamic models and the measurements without the use of �tting 

parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.
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1. Introduction

Magnetic particle imaging (MPI) [1] is capable of imaging bio-

compatible iron-oxide magnetic nanoparticle tracers with sub-

millimeter resolution without using ionizing radiation. This 

technology exploits the non-linear magnetization response of 

the particles to obtain images where signal intensity is lin-

early proportional to nanoparticle concentration. Applications 

in real-time cardiovascular imaging [2] and cell tracking [3, 4] 

have been demonstrated and others are currently in develop-

ment. There are currently two principal approaches to signal 

acquisition and reconstruction used in MPI, based on System 
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Function [1, 5] or x-space [6, 7] formulations, which have 

very different approaches for acquiring the signal generated 

by the nonlinear magnetization response of the nanoparticles 

and converting the signal into an image.

Goodwill and Conolly [6] introduced the use of an x-space 

relaxometer to characterize the behavior of nanoparticles in 

MPI scanners based on the x-space reconstruction formulation. 

The instrument consists of a set of concentric solenoid coils. 

The outermost coil, called the bias coil, delivers a ramping 

DC magnetic �eld. A drive coil (also referred to as the excita-

tion coil), located inside the bias coil, generates an alternating 

magnetic �eld. Finally, the innermost coil, called the receive 

or pickup coil, surrounds the sample and detects the nanopar-

ticle signal. The bias coil typically produces a bias �eld of up 

to  ±180 mT and the drive coil generates an alternating sinu-

soidal magnetic �eld of up to 40 mT (80 mT peak-to-peak) 

at frequencies of up to 25 kHz [8]. The nanoparticle sample 

is held in an Eppendorf tube and placed at the center of the 

pickup coil. The bias coil and drive coil are run simultaneously 

to produce a ramping sinusoidal �eld. The change in particle 

magnetization with time induces a voltage (signal) in the 

receive coil and this signal is processed further to obtain a 1D 

point spread function (PSF). This PSF forms an integral part in 

the evaluation of particle quality for use in x-space MPI.

Mathematical models developed so far to model the 

response of magnetic particles for use in x-space MPI have 

either relied on the Langevin function [6], which assumes 

an instantaneous response of particles to the applied �eld, or 

have been based on an effective relaxation time [9]. Recent 

work by Conolly et al [8, 9] illustrates the use of an effective 

relaxation time model, achieving a good �t between model 

and experiments and capturing the asymmetric shape of the 

PSF. This asymmetric shape of the PSF is believed to be 

introduced by the relaxation properties of the particles, as it 

is absent in the predictions of models based on the Langevin 

function. Although this effective relaxation time model pro-

vides a reasonable �t to experimental measurements, it does 

not take into consideration the dependence of relaxation time 

on the magnitude of the applied magnetic �eld and, being ad 

hoc, does not provide a direct link between nanoparticle prop-

erties and their MPI performance. There has been a growing 

interest to understand the effect of relaxation in MPI [8, 10–19]  

and our earlier work [20] made use of rotational Brownian 

dynamics simulations to show the effect of relaxation in 

x-space MPI. Here we make use of the phenomenological 

magnetization relaxation equation  by Martsenyuk, Raikher 

and Shliomis (herein referred to as MRSh) [21], which takes 

into account the �eld-dependent relaxation time, applicable 

in the case of high �elds encountered in MPI. This phe-

nomenological equation models the response of a ferro�uid 

(a suspension of particles) rather than a single particle and 

is also easy to comprehend and implement compared to the 

complex stochastic differential equations that are required 

for modeling the response of a single particle. In contrast to 

our previous work [22] in which we modeled the harmonic 

spectra of the nanoparticles in a magnetic particle spectro-

meter (MPS), here we use the x-space reconstruction method 

to make compariso ns between predictions using the Langevin 

function, the Shliomis equation [23] (herein referred to as Sh), 

and the MRSh equation and measurements from experiments 

conducted in a Berkeley x-space relaxometer.

2. Experimental methods

Cobalt ferrite nanoparticles coated with oleic acid were synthe-

sized by the thermal decomposition method at 320 °C [24]. A 

Brookhaven Instruments ZetaPALS/BI-MAS was used to mea-

sure the hydrodynamic diameter of the particles using dynamic 

light scattering (DLS). The core diameter of the particles 

was obtained from transmission electron microscopy (TEM) 

images using a JEOL 200CX transmission electron micro-

scope. Dynamic magnetic susceptibility (DMS) measurements 

were carried out to determine the relaxation mech anism of 

the particles using a calibrated ac susceptometer (DynoMag, 

Acreo), in a frequency range of 10 Hz–200 kHz at an applied 

�eld amplitude of 0.5 mT (5 G). Then, the particles were sus-

pended in toluene and tested in the Berkeley relaxometer at a 

bias �eld magnitude of 75 mT, which was ramped from  −75 

mT to  +75 mT in 0.25 s. The drive �eld amplitude was kept in 

the range of 10–40 mT while the frequency of the drive �eld 

was varied in the range of 1.6 kHz–25 kHz. The temperature 

during these measurements was maintained at 293 K.

3. Theory

In a non-interacting magnetic nanoparticle suspension, the 

magnetic dipoles are randomly oriented and the net magne-

tization for the suspension is equal to zero. When the sus-

pension is subjected to a magnetic �eld, the magnetization 

magnitude of the particles at equilibrium is well described by 

the Langevin function [25]

M

M
Lcoth

1
,

0

s

( )α
α

α= − ≡ (1)

where 
mH

k T

0

B

α =
µ

 is the Langevin parameter, M0 is the magne-

tization at equilibrium, Ms is the saturation magnetization, 0µ  

is the vacuum permeability, m is the magnetic dipole moment, 

H is the magnetic �eld, kB is the Boltzmann constant and T  

is the absolute temperature. Equation (1) expresses the mag-

netization of the suspension at equilibrium, however, this 

equation has been commonly used to model the behavior of 

magnetic nanoparticles in MPI, where the �elds are time-

varying and the magnetization is not at equilibrium [6]. This 

is tantamount to assuming that the particles respond instanta-

neously to the dynamic magnetic �eld. Recently it has been 

observed that �nite particle relaxation affects the perfor-

mance of magnetic nanoparticles in MPI [8–10], thus it has 

become clear that incorporating �nite relaxation into models 

of nanoparticle behavior in MPI is necessary.

Magnetic nanoparticles respond to the change in magnetic 

�eld either by rotation of the particle so that the �xed dipole 

moment aligns with the �eld, through internal rotation of the 
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dipole moment with the particle remaining �xed, or by a com-

bination of both. The mechanism by which the particles with 

�xed dipole moment rotate is called the Brownian relaxation 

mechanism, with a characteristic time Bτ  given by [25]

V

k T

3
B

h

B

τ
η

= (2)

where η is the viscosity of the solution and Vh is the hydrody-

namic volume. If the dipole rotates internally to align with the 

�eld, the particles are said to relax by the Néel mechanism, 

with a characteristic time Nτ  given by [25]
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where f0 is a characteristic attempt frequency, K is the uni-

axial anisotropy constant and Vc is the core volume. It should 

be noted that equations (2) and (3) are only applicable in the 

case of negligibly small applied �elds and for non-interacting 

particles.

Shliomis [23] developed a phenomenological governing 

equation to take into account �nite magnetic relaxation, which 

we refer to here as the Sh equation. Of interest here are cases 

where there is no bulk �ow of the suspension and for which 

the magnetization is collinear with the magnetic �eld, in 

which case the Sh equation reduces to

M M M

t
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For de�niteness we use the Brownian relaxation time B( )τ , 

which in this equation remains constant and is independent of 

�eld amplitude. Soon after, Martsenyuk, Raikher and Shliomis 

[21] developed another magnetization equation  (referred to 

as MRSh equation) involving the use of an effective-�eld 

method. For the case of nanoparticles in suspension in the 

absence of bulk �ow and for magnetization that is collinear 

with the magnetic �eld, this equation reduces to
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where 
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dln
B∥

( )
τ τ=

α

α
 is the parallel relaxation time.

In this study, equations (1), (4) and (5) were solved numer-

ically using the MATLAB ODE45 function to obtain the mag-

netization as a function of time. The unidirectional �eld was 

modeled as the summation of bias Hb( ) and drive Hd( ) �elds, 

illustrated in �gure 1 and given by

H t H t H tb d( ) ( ) ( )= + (6)

where H t H
H t

t
b

2
b,0

b,0

scan

( ) = −  and H t H ftsin 2d d( ) ( )π= . Here, 

tscan is the scan time for a measurement, t is the instantaneous 

time and f  is the drive �eld frequency. The nanoparticle signal 

picked up by an x-space relaxometer is given by negative of 

the rate change of magnetization with time. Whether derived 

through experimentation or simulation, this signal was pro-

cessed using algorithms [6, 7, 26] developed in the Berkeley 

MPI lab to obtain the point spread function. The basic comp-

onents of the x-space algorithm include phase correction and 

alignment for the drive �eld and received signals, �ltering of 

the raw data, gridding of the time-domain signal to the image 

domain using the known trajectory of the �eld-free region, 

recovery of spatial DC information through use of a continuity 

algorithm and overlapping partial �elds-of-view (pFOVs), 

and stitching of the DC-recovered pFOVs into a single output 

image.

4. Results

The properties of the nanoparticles used in the x-space relax-

ometer measurements were the same as those reported in our 

previous work [22] and were the properties used in the simula-

tions (that is, the simulations contained no �tting parameters). 

The core diameter determined using transmission electron 

microscopy was 14 nm, with a geometric deviation of ln 

σ  =  0.12 (standard deviation of ln σ  =  0.53) according to �t-

ting to a lognormal size distribution. Dynamic light scattering 

(DLS) indicated a volume-weighted hydrodynamic diameter 

of 18 nm with geometric deviation of ln σ  =  0.07 (standard 

deviation of ln σ  =  0.24). Dynamic magnetic susceptibility 

(DMS) measurements con�rmed the presence of particles 

relaxing by the Brownian mechanism based on the presence 

of the out-of-phase susceptibility peak at the frequency pre-

dicted based on the calculated Brownian relaxation time for 

the particles, according to the Debye model [27]. The hydro-

dynamic diameter estimated from DMS measurements was 

approximately 17 nm, in good agreement with the hydrody-

namic diameter determined using DLS. The saturation mag-

netization of the particles was considered to be 425 kA m−1, 

the same as the domain magnetization. These particles were 

Figure 1. Pro�le for the applied �eld, obtained by the summation of the ramping bias �eld and an oscillating drive �eld. (Left) the applied 
offset �eld, corresponding to a slowly moving �eld free point in a MPI imager, (middle) the drive �eld and (right) the �eld experienced by a 
nanoparticle is the summation of the bias �eld and the drive �eld.
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suspended in toluene (η = 0.000 78 Pa.s). We note that our 

choice of magnetically-blocked cobalt ferrite nanoparticles in 

our experiments stems from an interest in evaluating the role 

of �nite magnetic relaxation on MPI properties and a desire 

to make quantitative comparisons to the ferrohydrodynamic 

equations. As such, it is desirable to use particles with a single, 

well-de�ned magnetic relaxation mechanism.

Simulations were carried out under the same magnetic 

�eld conditions used in the experiments. Figure 2 summarizes 

representative predictions for the magnetization as a function 

of time according to the various models for situations of (a) 

strong bias, (b) moderate bias and (c) low bias �eld. In all 

cases the Langevin predictions are in-phase with the oscil-

lating component of the applied �eld but the MRSh and Sh 

predictions show a distinct delay. The delay in the response is 

due to �nite particle relaxation. It is seen that the magnetiza-

tion predicted by the MRSh model catches up to the applied 

�eld faster than the magnetization predicted by the Sh model. 

In �gure 2(a), the presence of a strong bias �eld orients the 

particle dipoles in the direction of the bias �eld and the parti-

cles reach a saturation magnetization. We observe oscillations 

due to the presence of an alternating �eld, but these oscilla-

tions are restricted to a short range of change in magnitude of 

magnetization. As the bias �eld magnitude decreases, the par-

ticles begin to respond more freely to the alternating �eld but 

we still observe a jagged magnetization response, rather than 

a smooth sinusoidal shape. This is due to the combination of 

the bias and drive �eld torques either accelerating or deceler-

ating the dipole alignment process depending on the direction 

of the �elds (i.e. both either acting in the same or opposite 

direction along the same axis). Ultimately, when the bias �eld 

is low, the particles respond freely to the alternating magnetic 

�eld. A particularly important observation with regards to 

the Langevin magnetization is that the magnetization curve 

reaches zero magnetization when the �eld is zero. We expect 

this from the theory as the Langevin function assumes that 

particles respond instantaneously to the applied �eld and is 

independent of the relaxation time.

To facilitate comparisons with experiments we analyzed 

the signal obtained from the dynamic magnetization in simu-

lations using the same algorithm used to obtain PSFs from 

experimental measurements. Representative PSFs comparing 

simulations with experiments under different �eld conditions 

are shown in �gure 3. The processed signal is normalized so 

as to represent the simulation predictions and experiments on 

the same scale and facilitate comparison. Figure 3(a) shows 

evidence that at frequencies on the order of 1.6 kHz relaxa-

tion does not have a signi�cant effect on the PSF. This is to 

be expected because at these frequencies particles are able to 

follow the drive �eld without signi�cant delay. As the drive 

�eld frequency increases, one observes in �gure 3(b) a change 

in the shape of the PSF for the experiments as well as for the 

Sh and MRSh models, which take into account �nite magnetic 

relaxation. This relaxation leads to a shift in the peak posi-

tion of the PSF as compared to the peak position of the PSF 

predicted using the Langevin function. Further increasing the 

frequency to 25 kHz, a frequency commonly employed in MPI 

scanners, �gure 3(c) shows an increased shift in peak location 

and better agreement between the PSF obtained by analyzing 

the predictions of the MRSh model and that from the experi-

ment. These observed changes in the PSF shape and position 

were for constant �eld amplitude of 20 mT. On increasing the 

�eld amplitude to 40 mT and keeping the frequency the same, 

we see excellent agreement between the MRSh model predic-

tions and the experiments, as shown in �gure 3(d). It appears 

that the MRSh equation, which accounts for the dependence 

of relaxation time on the magnitude of the applied magnetic 

Figure 2. Magnetization response of particles to the applied �eld 
(25 kHz, 20 mT) in the regions of (a) strong bias, (b) moderate bias 
and (c) low bias. The Langevin predictions show in-phase oscillations 
with the applied �eld but there is a delay in the MRSh and Sh 
predictions due to relaxation. The symbols are a guide to the eye.

J. Phys. D: Appl. Phys. 49 (2016) 305002
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�eld, is able to predict the behavior of the particles more accu-

rately than the other models.

In order to better understand the role of �eld dependent 

relaxation, we determined the peak position for various �eld 

amplitudes at a drive �eld frequency of 25 kHz. Figure  4 

shows a comparison of the peak position between the fer-

rohydrodynamic models and experiments at different �eld 

amplitudes. Since in the Langevin model the particles respond 

instantaneously to the �eld, we would expect that the peak 

position to be at zero bias �eld for that model and for it not to 

shift with change in �eld amplitude. From �gure 4 we see that 

indeed the peak position for the Langevin model does not shift 

with change in �eld amplitude because the corresponding 

time dependent magnetization, shown in �gure 2, is exactly in 

phase with the applied �eld. We see a very small offset in the 

simulated Langevin data due to discretization during gridding 

and pFOV DC recovery in the x-space processing algorithm 

employed. The Sh model predictions show a gradual shift 

in peak position as an effect of relaxation. The shift in peak 

position in the experimental measurements is much greater, 

with the MRSh model showing excellent agreement with the 

experimental observations. Because the Sh equation does not 

account for �eld dependent relaxation time, we believe the 

agreement between the MRSh equation and the experiments 

indicates that �eld dependence of the relaxation time can 

become relevant under the �eld conditions used in MPI.

Next we consider the effect of variation in frequency at 

constant �eld amplitude of 20 mT on peak position. As shown 

in �gure 5 there is no change in peak position for the predic-

tions of the Langevin model with change in frequency, which 

is again due to the model assuming instantaneous response 

of the particles. It can also be seen that the shift in peak posi-

tion for the experimental measurements is less than 3 mT for 

frequencies smaller than 6 kHz. However, the peak position 

increases gradually, i.e. the peak moves away from zero, as 

the �eld frequency is increased to 25 kHz where the effect of 

relaxation is observed to be most prominent. The peak position 

for experiments shows a trend similar to the predictions using 

the Sh and MRSh models and good quantitative agreement 

is observed between the MRSh model and the experiments. 

These results further support the use of this �eld-dependent 

relaxation model to predict the behavior of particles.

Apart from the peak position, another important piece of 

information that can be obtained from the PSF is the full width 

Figure 3. Representative PSFs showing comparison between models predictions and experiments for �eld conditions of (a) 1.6 kHz, 20mT, 
(b) 12.2 kHz, 20 mT, (c) 25 kHz, 20mT and (d) 25 kHz, 40mT. The symbols are a guide to the eye to differentiate between the models while 
the lines represent the entire positive scan PSF.

J. Phys. D: Appl. Phys. 49 (2016) 305002
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at half maximum (FWHM). The PSF FWHM is one common 

way to de�ne resolution attainable with a given magnetic nan-

oparticle for a given �eld gradient in a MPI scanner. Figure 6 

shows the effect of �eld amplitude on the FWHM for a �eld 

frequency of 25 kHz. The experiment predicts the FWHM 

to decrease at 20 mT and increase thereafter with increasing 

�eld amplitude. Interestingly, this feature of the experimental 

observations was accurately captured by all three models, and 

thus cannot be used to differentiate among them. The apparent 

minimum in the FWHM predictions of the Langevin function 

is attributed to changes in the shape of the signal (illustrated 

in �gures S1 and S2 in the supplementary information file 

(stacks.iop.org/JPhysD/49/305002/mmedia)) with increasing 

drive �eld amplitude at constant frequency. Also, we observed 

that there is no apparent difference in FWHM between the 

MRSh and Sh models.

Finally, to assess the effect of relaxation on the FWHM due 

to variation in the frequency, we made comparisons between 

the predictions from models and experiments at constant drive 

�eld amplitude of 20 mT, as shown in �gure 7. The trend in 

FWHM for the Langevin function shows slight �uctuations 

and we believe that they are introduced because of the PSF 

reconstruction process. Here as well we do not see a signi�-

cant difference between the predictions of the MRSh and Sh 

models, with both showing relatively good agreement with the 

experimentally observed trend. Even though there is a lack 

of quantitative agreement between the models and experi-

ments on the basis of the FWHM, the agreement between the 

MRSh model and experiments is quite remarkable in terms of 

PSF shape and peak position without the need of �tting para-

meters. According to predictions in our earlier work [22], a 

signi�cant difference between the MRSh and Sh model would 

be observed with particles having a core diameter greater than 

20 nm. Also, we believe that further improvement in the recon-

struction algorithm would improve the FWHM predictions.

Figure 4. Position of the PSF peak for a drive �eld frequency 
of 25 kHz at various drive �eld amplitudes, showing excellent 
agreement between the predictions of the MRSh equation and 
experimental measurements. Here, the symbols are the actual data 
points while the lines serve as a guide to the eye.

Figure 5. Experimental peak position as a function of drive �eld 
frequency is accurately predicted by the MRSh model.

Figure 6. Effect of �eld amplitude on the full width at half-
maximum (FWHM) at a �eld frequency of 25 kHz.

Figure 7. Comparison between the predictions using models and 
experiments for different �eld frequencies at an amplitude of 20 mT 
to assess the effect of relaxation on the FWHM.

J. Phys. D: Appl. Phys. 49 (2016) 305002
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5. Conclusions

The experiments and model predictions presented herein 

demonstrate the potential of the ferrohydrodynamic equa-

tions in predicting the performance of magnetic nanoparticles 

for use in MPI. Particularly, excellent agreement was obtained 

between the PSFs obtained from predictions of the dynamic 

magnetization given by the MRSh model and the experimental 

PSF of magnetic nanoparticles with no �tting parameters used 

in the model (that is, all magnetic particle properties used in 

the simulations were independently measured). Of note, only 

the MRSh model, which incorporates the �eld-dependence 

of the magnetic relaxation time, was capable of reproducing 

the shift in peak position of the PSF, whereas both the MRSh 

model and the Sh model were able to reproduce the trend 

in FWHM with changing magnetic �eld amplitude and fre-

quency. The results presented in this work enable prediction of 

magnetic nanoparticle behavior in MPI prior to manufacture 

because the models do not make use of �tting parameters. The 

models also serve as a platform to better understand the effect 

of �eld-dependent relaxation on the performance of particles.
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