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Activities in the field of DLFCs
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Status - Identification of Potential Applications
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& Potential use cases identified
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& Outlook: Comparative Cost Analysis of Sustainable Propulsion Technologies
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Status - Fuel selection
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& Easy handling,

transport and storage

& Promising theoretical

energy densities

& Systems with higher
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Status - Ammonia’s carbon footprint in respect to LTT
Synthesis routes & propulsion systems

- High H,-conversion efficiency
|

- Low H,-conversion efficiency

0 2 4 6 8 10 12 14
Carbon Footprint [Kgcoz_eq/100km|

NH;-FCEVs have lower CF than fossil Diesel-ICE and

comparapble CF to other low-cartbon options!

Usage of NH5 in fuel cells can reduce CF more

than usage of NH;as a transport vector

» Depends on conversion efficiency of
NH; splitting and system efficiency of
NH; fuel cell
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Carbon Footprint of electricity supply [Kgcoz-eq/KWh]
H,: hydrogen, NH, : ammonia, HB: Haber-Bosch, CCS: Carbon capture and storage, FCEV: Fuel cell electric
vehicle, ICE: Internal Combustion Engine, BEV: Battery-Electric Vehicle, CF: Carbon Footprint
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Status - Carbon footprints evaluation for different potential fuels LTT )'-ﬁ

mH, from fossil production (H2-FO)

> mmmmmm— - - e mH, from electrolyzer, grid-mix (H2-GM)
EE | — £t — .
£8 | Duaxom P : o 15 - mH, from electrolyzer, wind-power (H2-WP)
ag L EI____ .t =) —Reference fuel production, fossil
S DLFC el bLFe g o Reference fuel production, bio-based
Fuel Electricity ~
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;5 H, Ha HFC 1 KWh
Production Electricity - a
Ethanol Methanol Ammonia Urea
DLFCs can be a climate-friendly alternative to HFCs. \
® H2-GM: Fossil fuel production routes meet their targets. @M More detailed modelling of both pathways necessary:
. . ® Replacing thermodynamically-ideal model for DLFCs with more
| | - - .
H2-FO and H2-WP: Negative GWI for production of Ethanal, realistic model: Lower GWI targets.
Methanol and Urea necessary. ® More detailed modelling of the hydrogen pathway (e.g. including
" State-of-the-art HFC with fossil H,: Bio-based ethanol and transport): Higher GWI targets.
methanol productions meet their targets. @ Evaluation of electricity-based fuel production routes.
(ﬁ Comparison to internal combustion engines.
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Status - Recap of the latest results presented at the FSC conference

ﬁ(% presentations and 2 posters

Use Cases
for DLFC

Fuel Selection and
Catalysis

‘ Use Cases ‘ ‘ Impact ‘

sodium alkaline
boro-
hydride
ammonia
borane

dimethoxy-
methane

1-methoxy-
2-propanol

trimethoxy- Allowed environmental
methane impacts at production
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Closed Material Cycle
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Adaptive Conversion Systems
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Outlook - Driving factors for developing DLFCs now!

Additive
manufacturing
methods
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Sustainable
fuel availability

Membrane
development

Demand to import

sustainable Decreasing Changing
energy-carrying acceptance of fossil regulatory
molecules fuels

Local
shortage of
green H,
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Outlook -
What is different today?

o Problematic membranes:
Low stability
High fuel crossover

Improved

Improved Anion-Exchange _
membranes for alkaline media

New

materials

|

synthesis
Catalysts...
Pt-based methods
Stability _—
Scalability of synthesis Better mechanistic
| understanding

LHigh costs:

L Low staibility of membranes

Catalyst materials + synthesis
Overall low efficiency

. Missing regulations

Catalyst materials improved (multi-
metallic, non Pt) but not enough °

In-Situ investigations to

identify reaction mechanisms

DFT calculations to
understand limiting steps

Sustainable production

routes for fuel candidates
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Outlook - How to develop efficient DLFCs applying FSC core know-how?
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(Direct) Liquid Fuel Cells

advantage/com
petition vs. H2-
fuel cells
ication EU/general
{neﬂilll""u;ne—: ship?) regulations
general
o ] )
e consideratiosn
(DILFC
temperature regime
LT-<150°C,
MT: 180-250°C,
HT: =600°C
acidic/alkali
E:lwirt'.l:i'nrm!::ltE mass transfer
& thermal
management
flow cell design process
balance of plant
(BoP)/periphery
i i durabili
Contributions: urability
FZ) (Mayrhofer):

- online-evaluation of reaction

) ) poisoning high
high relevance: orange (co) efficiency
middle relevance: green

low rlevance: blue
sandwich
Use CO2? design: two
methane combination of o :
I ling (CO2) electro catalyst
usage. energy chemo- and " design Catal'jfﬁt
balance? electrocatalysis
Cost
how to avoid CO2 ;
emissions? bio-catalysts
concepts | icdoxflowbattery
like-concepts for
storage/usage of dehydr
integration bio-based fuels “ar:-'jut:‘gf—
- roaches - toxicity, _
into energy app LOHC = HZ-storage, - potential?-
environmental
systems but fuel would be .
Isopropanol/aceton Impact
LCA production ) densi
PDOT-PSS? pathways full/partial energy density
conversion
Local inhomogeneities in infrastructure
heat and mass transfer
within membrane
electrode assemblies fUE-|
stability/degredation
parameters for
. . a good fuel:
dynamic materials e — stability
optimization ) ) ! alternatives
ion-exchange without storage. to carbon-
membranes membrane? transportation pjg-based? based fuels?
Werle (NMR)

quantity

noble/non-
nohble
metals

what can we learn
from nature?

liquid/gasified
fuel

ammonia
and
derivatives?

methanol/NH4
CoOnversion

Isopropanolf

aceton



Contributions:

LAC:

- electrochemical
characterization

- TEM with electrochemical

cell (under development)

- inorganic material synthesis
and characterization
- FTIR- quantitative gas-
analysis

IfK Zobel:

- ¥-ray and neutron
scattering, XRD, PDF, QENS,
SAMS/SANS to indentify short-
long-range structures and
diffusion dynamicx of H-
containing molecules

FZ] (Mayrhofer):

- online-evaluation of reaction
products with coupled analytics
- time-resolved measurement of
selectivity of reactions and stability
of electrode materials
- previous knowledge in liguid fuel
ells

ITMC:
- electro catalyst design
- reaction mechanims (at electrodes)
- heterogenious catalysis
- (porous) membrane materials

ITv:
- quantum chemical calculations
- multi-phase transport phenomena

HGID:
- quantum chemical calculations

durability

nprtirri:atinn
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ion-exchange
membranes
Werle (NMR)
OVT:
- ion-exchange
membrane materials
- PEDOT-PSS?

IEK-9 (FZ]): NMR for
degradation/reaction studies,
catalyst & membrane combinations

ERT:
- evaluation on cell level
- reaction parameters
- safety assesment of fuel (together
with TME)
- catalyst evaluation/poisoning

- additive manufacturing
(jumior research group
Linkhorst)

- flow cell desing and
scale-up

TME:
- system design and
simulation
- identification of
possible use-cases
- testing cells and stacks
-flow field, cell and stack
design
- CFD simulation incl.
water transport and
simplified
electrochemistry

e Ay alternatives moEt
methypat 25 to carbon-
membrane? transportation pio-based? based fuels?
SVT:
WEA- - optimization frameworks for integrated
design

- IR Thermography; mass spectrometer; FTIR;
Visualization techniques
- test bench for determination of transient temperature
fields and contact heat transfer coefficients
- profile sensor for characterization of liquid structures
within the boundary layer
- cavity-ring down spectrometer for line-of-sight
determination of multi-species concentration within
the boundary layer of a flat plate

LTT{KL)
- degradation studies (with ERT)
- simulation or reactions on catalysts
-CAMD for fuel cells {with SVT)
- integrated design/optimization of fuels and production
LTT (NVDA):
- LCA & process integration

- CFD simulations
- computer aided screening of reactions,
materials, catalysts
- screening of production pathways (with
LTT (NVDA))
- predictive models of properties
- previous work on fuel cells, flow
batteries and H2 generation an dpower 2x

iAMB:
- engineering of biocatalysts for LFC
- nuclear resonance vibrational
spectroscopy for evalutaion of iron
containing (bio-jcatalysts
- design of biological membrane-free LFC

- understanding of catalytic mechanism of
biocatalysts with biochemical methods for
learning from nature




Why were DLFCs neglected after the period of 1990-20007?

Reaction yield

Life-cycle
analysis
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depending requirements

Low efficiency due to:
- Low stability of membranes

- High fuel crossover

Low catalyst activity:
- High loadings

- Only Pt

- Stability

—> High prices approx. 41% on catalyst material + synthesis

EXC 2186: The Fuel Science Center
Slide 15 RWTH Aachen University :
Introduction | updated: 02.11.2020 FSC* Stience center
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Benchmark

Electricity

Emissions

Global Warming Impact

Electricity

Electricity
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