

Model Based FDIR process with Capella and COMPASS

Results of a CNES / TAS-F study and way forward

R. de Ferluc – A. Provost-Grellier – B. Dellandrea

MBSE ESA WORKSHOP – DEC 2016

THALES ALENIA SPACE FRANCE

- Study objectives
- TAS-F background
- Model Based Process
- Prototyping and use-case
- Way forward

THALES ALENIA SPACE CONFIDENTIAL

Previous R&T CNES study conclusions

- Evaluation of FDIR formal verification
 - Thanks to Model Simulation
 - Thanks to Model Checking techniques
- > State of the art and experimentations conclusions :
 - Promising techniques to assist Spacecraft Safety, Dependability and FDIR engineers
 - Increasing efficiency and performance of existing tools
- However, rarely applied on programs
 - Not only in Space domain, but also in other domains.

Why?

- Need for detailed knowledge on the methodology and hands-on practice by prospective users.
- Big effort required to build a formal model of the system
- Insufficient means or methodology to ensure that the modelled system matches the real system
- Scarce understanding of properties to be proved
- Tools with shortcomings in ergonomic and interoperability with other engineering environments.

How to ?

- Provide domain analysis (RAMS, FDIR, ...) based on formal methods / languages integrated to tools the user knows (engineering environments).
- Share modelling effort between engineering and Safety/FDIR teams
- > Ensure that the modelled system matches the real system
- Clearly specify which properties need to be proved

Study objectives

7 MBSE ESA workshop – decembrer 2016

Study objectives

CNES has initiated a study with the following objectives

- Define a Safety/FDIR process for Space Domain starting from the state of the art of other domains (aeronautical domain, transportation,)
- Identify the most suitable tools
- Experiment on a small case-study
- Elaborate some recommendations

Timeline : 2013 - 2014

Purpose :

- Increase efficiency of safety analysis
- reduce the FDIR validation & verification costs

TAS-F background

THALES ALENIA SPACE CONFIDENTIAL

9 MBSE ESA workshop – decembrer 2016

TAS-F background – Melody Advance / Capella (1/)

Beginning of Model Driven Engineering:

- Slow & high-effort deployment of modeling techniques
- COTS are not well adapted to industrial needs
- > Tool vendor dependencies are too constraining

THALES strategy:

- > Define a method: ARCADIA
- Develop dedicated tooling: Melody Advance
 - Specified, designed & developed from operational needs
 - With the necessary capabilities (allow for quality and productivity, user-friendly, permits early validation, performance & scalability, suitable for configuration management and collaborative engineering, ...).
 - Applicable to every domain (Aeronautical, transportation, communication, ...)

TAS-F background – Melody Advance / Capella (1/)

OSSing Melody Advance: public name is Capella

TAS-F background – Melody Advance / Capella

Melody Advance / Capella

ESA studies :

> COMPASS

- develop a toolset for evaluation of system-level correctness, safety, dependability, and performance (performability) of the on-board computer-based systems.

> COMPASS GRAPH

- Develop a graphical editor for SLIM models.

> AUTOGEF

- Development of the Automated Model Generation Toolset for FDIR (AUTOGEF) as an add-on to the COMPASS Toolset, and definition of the associated methodology. (Synthesize FDIR diagnosis and controllers in SLIM model for an given system).

FAME (Failure and Anomaly Management Engineering)

- Definition of the FDIR development methodology and associated V&V process, and development of the Failure and Anomaly Management Engineering (FAME) Environment as an extension to COMPASS toolset.

> FDI AOCS

- Improvement of AOCS, FDIR & Avionics for compliance with LEO de-orbitation new requirements

Model Based Process

THALES ALENIA SPACE CONFIDENTIAL

Model Based Process

Proposed approach

Identification of roles and activities => the process

Identification of tools

Model Based Process

Proposed activities :

- Requirements analysis
- Functional /logical Analysis
 - System Functional Analysis
 - System Dependability / Safety analysis
 - Consolidation of the functional analysis
 - RAMS analysis at functional level

System Physical Design

- System design at physical level
- System Dependability / Safety analysis at physical level
- Consolidation of the System Physical Design

FDIR development >

- FDIR requirement analysis
- FDIR objectives definition
- Altgined with ESA study results FDIR concepts and FDIR strategy specification
- FDIR design
- **FDIR** implementation
- Final FDIR V&V

Proposed tools :

Requirements Management tool (e.g. DOORS)

- FunctionalAnalysis
- Logical / Physical Design
- Dependability / Safety analysis
- RAMS analysis

COMPASS

- FDIR specification
- > FDIR design
- EDIR Verification

FDIR Editor

THALES ALENIA SPACE CONFIDENTIA

Exomars TGO case study

 Functional Analysis

Functional Hazard Analysis

Safety objectives allocation on FA

THALES ALENIA SPACE France

RAMS analysis

Involved Unit	Failure Mode	Effects on output functional exchanges		
Compute desired spacecraft attitude function	Bad desired attitude	BAD_DESIRED_ATTITUDE		
Measure spacecraft attitude function	No measures	MEASURES		
	Biased measures	BIASED_MEASURES		
	Erron out most lives	ERRONEOUS		
Compute Actions for desired Attitude function	1 1 Gion is generated	NO_ACTIONS		
	Biased actions are produced	BIASED_ACTIONS		
	Erroneous actions are produced	ERRONEOUS		
Execute Action Function	No action is executed	NO_ACTIONS		
	bad action is executed	BAD_ACTIONS		

From Melody Advance/ Capella to SLIM models

19 MBSE ESA workshop – decembrer 2016

COMPASS analysis at functional level

System design

- Physical design > FMEA based on Equipment Datasheet (EDS?)
- Modeling of Failure modes and fault propagation at physical level

Fault Injection and **COMPASS** analysis : FMEA / FTA

who was not not not not

Criticity analysis

÷

diffected in 3 2 8

rinel supported

 $\div \div \div \div \div \div \div \div$

Remarks

> The process should be iterative

- Add new safety related functions (filter, detection, ...)
- Specify new observables / commandable data
- Add FDIR related components / mitigation / redundancy
- Add cross-strapping

- ...

FDIR

FDIR objectives definitionFDIR strategy definition

- Classify failures
 - Detection level
 - Isolation level
 - Reconfiguration level

Fault	Detection level	Reconfiguration level
FM1-1	Level 0	Level A
FM1-2	Level 1	Level B
FM2	Level 2	Level B
FM3	Level 2	Level B

				Isolation	IMU	CSW
				HW only	FM1-1	1
				Processor		FM1-2
	Detection	IMU	CSW	unit with		FM2
\rightarrow	HW only	FM1-1		SW		FM3
	Processo	1	FM1-2 FM2			
	r unit			Recovery	IMU	CSW
	with SW		FM3	HW only		
				Processor		FM1-1
				unit with		FM1-2
				SW		FM2
						FM3

- FDIR_OBJ1: Surviving shall be ensured for any single failure
- FDIR_OBJ2: Achieve S/C manoeuvres for critical phase even in case of failure
- FDIR_OBJ3: Fuel consumption shall be optimized and reconfiguration and equipment loss shall be minimized
- Define reconfiguration strategies

FMECA

- Fail'Op
- Fail'Safe
- .

FDIR Implementation

Configuration of PUS monitoring and action services based on models

Way forward

THALES ALENIA SPACE CONFIDENTIAL

Way forward

Step 1 : Deployment of Model Based practices in the Engineering process

> At architecture level

- Requires a mature and already proven tool and methodology (like Capella and Arcadia)
- Guidelines and validation rules should ensure semantics of the models
- Models should be used to produce artefacts : specification / code / database / tests / ...
- > At behaviour level:
 - Use of different formalisms to cope with different contexts (Matlab/Simulink, SDL, SLIM, TFPG, scenarios, ...)
 - Models should be used to produce artefacts : specification / code / tests / ...
 - Behavioural models should be coupled with architectural design models

Step 2 : Define a Safety / Dependability / FDIR reference architecture

- > Extend the Avionics Reference Architecture (ASRA) and the On-Board Software Reference Architecture (OSRA) with dedicated concepts and methodology
- > Provide dedicated « viewpoints » in the engineering tools (Matlab/Simulink, Capella, SCM, ...)
- > Investigate use of Electronic Data Sheets to support Failure Mode definition (at equipment level) and coupling with engineering models.
- > Focus on production of artefacts (specification, code, configuration, ...)

Step 3 : coupling Model Checking and Simulation tools

- Consolidate objectives : early validation of the system design (redundancy, cross-strapping, strategy, ...), generation of FMEA, FTA, Failure Propagation Analysis,
- Connect Model Checking & Simulation tools to Engineering tools : set-up model to model (M2M) transformations like Capella -> AADL/SLIM
- > Map the system behavioural models to formal languages used for model checking and simulation (cope with synchronisation, timing aspects, ...)

Way forward

