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Abstract

The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the
context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and
inspection. For future space missions, we developed - with challenging requirements from the European space industry - a novel
modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables
engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model
checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety,
dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the
system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs
from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1
(basic concepts and ideas) to early level 4 (laboratory-tested).
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1. Introduction

A spacecraft is a machine that fulfills mission objectives out-
side of Earth. Spacecraft design involves a vast body of natural
sciences and many engineering fields, including, but not com-
pletely covering, materials, optics, power, propulsion, perfor-
mance, reliability and security engineering. These disciplines
are integrated into an interdisciplinary field known as systems
engineering that addresses the design of systems and the man-
agement of complex engineering projects over their life-cycle.
Space systems engineering [1] is an evolving field and its cur-
rent state of practice is strongly influenced by a relatively new
engineering discipline, namely that of software development.

Spacecraft in the early space age included software whose
size was at most a few dozens of lines of code. The advent
of digital interfaces of parts and equipment, and the flexibility
of software-based control over analogue interfaces and electri-
cal/mechanical control led to an exponential growth of the size
of the deployed software [2]. Nowadays, the latter is compiled
from millions lines of code. Hence, software dictates the over-
all spacecraft behavior to an ever-increasing degree. This is
also reflected within the space systems engineering life-cycle.
More emphasis is now given to the system-software perspective
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that encompasses the interaction between the software and the
remainder of the system, typically perceived by the software
engineers as hardware.

The COMPASS project [3] advances the system-software
perspective by providing means for its validation in the early de-
sign phases, such that system architecture, software architecture,
and their interfacing requirements are aligned with the overall
functional intents and risk tolerances. Validation in the current
practice is labor-intensive and consists mostly of manual analy-
sis, review and inspection. We improve upon this by adopting
a model-based approach using formal methods. In COMPASS,
the system, the software and its reliability models are expressed
in a single modeling language. This language originated from
the need for a language with a rigorous formal semantics, and
it is a dialect of the Architecture Analysis & Design Language
(AADL). Models expressed in our AADL dialect are processed
by the COMPASS toolset that automates analyses which are cur-
rently done manually. The automated analyses allow studying
functional correctness of discrete, real-time and hybrid aspects
under degraded modes of operation, generating safety & de-
pendability validation artifacts, performing probabilistic risk
assessments, and evaluating effectiveness of fault management.
The analyses are mapped onto discrete, symbolic and proba-
bilistic model checkers, but all of them are completely hidden
away from the user by appropriate model-transformations. The
COMPASS toolset is thus providing an easy-to-use push-button
analysis technology.

The first ideas and concepts for the development of the COM-
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Figure 1: Space systems engineering life-cycle of European missions. Source:
ECSS Standard on Project Planning and Implementation [8].

PASS toolset emerged in 2007, due to a series of significant
advances in model checking [4], and especially in its proba-
bilistic counterpart [5]. These advances opened prospects for
an integrated model-based approach towards system-software
correctness validation, safety & dependability assessment and
performance evaluation during the design phase. Its technol-
ogy readiness level was estimated at level 1, i.e. basic princi-
ples were observed and reported. The European Space Agency
(ESA) issued a statement of work to improve system-software
co-engineering and this was commissioned to the COMPASS
consortium consisting of RWTH Aachen University, Fondazione
Bruno Kessler and Thales Alenia Space. Development started
soon after, and in 2009 a COMPASS toolset prototype was deliv-
ered to the European space industry. Maturation was followed
by subsystem-level case studies performed by Thales Alenia
Space [6]. As of 2012, two large pilot projects took place in ESA
for a spacecraft in development. This marked the maturation
of the COMPASS toolset to early level 4, namely laboratory-
tested. The novel contribution of this paper is the report on the
second pilot project. This paper furthermore summarizes the
background work and the first pilot project, whose results were
published elsewhere [7]. Altogether, it describes the current
state of the art in system-software spacecraft co-engineering,
ranging from the used techniques, to the tools and the conducted
industrial projects.

This paper is organized as follows. A brief overview of space
systems engineering is given in Section 2, which is followed by
an introduction to the developed modeling language (Section 3),
the toolset (Section 4) and its analyses. The spacecraft platform
is described in Section 5, and the pilot projects are presented
in Section 6 and 7. The paper wraps up with the related work
(Section 8) and the conclusions (Section 9).

2. Space Systems Engineering

The European tradition and practice of spacecraft engineering
is codified in the ECSS standards [9] issued by the European

Space Agency. The spacecraft system life-cycle is depicted in
Figure 1. It starts with mission analysis in phase 0. In phase
A, management and engineering plans are set up and functional
aspects and feasibility are investigated. During phase B, a pre-
liminary system design is drafted and reviewed. In the phases
that follow, the system design is refined to its implementation
and the system is verified, launched and operated. In the early
phases and most notably in phase B, the system is decomposed
into its constituent parts, including the thermal, power, attitude
control subsystems and the software. Experts on the respec-
tive engineering discipline further refine the subsystems, while
system engineers ensure coherency among them.

Increasing Software Functionality. Software plays an increas-
ing and vital role in the overall system that is evident from the
exponential growth of the source code sizes in modern space-
craft [2]. Today, software accompanies modern microprocessors
in order to provide unprecedented functionality for an ever in-
creasing range of mission demands. For example, navigation
systems are equipped with software that delivers strict orbit con-
trol for improved precision. Also, on-board software handles
enormous mission data sets generated by the high-resolution
sensors used in Earth observation satellites. Dedicated software
implements functionality that addresses key reliability and auton-
omy requirements. Especially for deep space missions, where
communication windows are short and delays are long, auton-
omy in terms of survivability is essential to mission success.
This is mainly achieved by a fault management system [10], the
major part of which is realized through software. Supported
functions include monitoring, detection, isolation and mitiga-
tion of spacecraft faults that may occur due to the harsh space
conditions (mechanical stress, wear and radiation). Functional
correctness, safety, and dependability of the overall system has
to be ensured under the presence of all known space hazards.

Quality Assurance. Verification and validation take place contin-
uously throughout the ECSS life-cycle [11, 12]. Verification ex-
amines whether the various requirements (e.g. for a subsystem or
an equipment) are met, whereas validation typically focuses on
whether higher-level requirements (e.g. mission objectives, sys-
tem requirements) are met by a constituent system or software.
Verification and validation activities are systematically planned
based on the drafted requirements and the lessons learned from
earlier activities in the engineering life-cycle. The activities’
outcomes include justifications, utilities, trade-offs, sizing, feasi-
bility assessments, compliance matrices, source code, mission
diagrams and other artifacts. Typical examples are the journals
of test suite executions, as well as a radiation analysis from data
of similar previous missions. Two analyses are typically con-
ducted for the safety and dependability aspects, namely fault tree
analysis (FTA) and failure mode and effects analysis (FMEA).
FTA can be visualized as a tree that describes how lower-level
failures, or their combination by Boolean AND/OR gates, re-
sult in a top-level event, e.g. a system failure. FMEA tables
describe the (observable) effect of failure occurrences on the
system. Fault trees and FMEA tables are essential input in the
development of a fault management system, which may be sub-
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ject to failures as well, and thus deserves further analysis to
ensure its correctness, safety and dependability. Additionally,
probabilistic risk assessments are conducted by computing, from
the failure rates of lower-level failures, the rates or probabili-
ties of higher-level failures. This can be done using the fault
tree as a behavioral structure, or alternatively by a dedicated
reliability model such as a Markov chain. Both are typically
crafted manually and this involves a labor-intensive activity that
requires a broad and deep understanding of the overall spacecraft
behavior under degraded conditions. In any phase, verification
and validation enhance the understanding of the system under
development and eventually attain informed decisions for the
subsequent phases. Validation outcomes may justify design al-
terations, or the need for additional requirements. Also, they can
be used to revise or refine budgets, schedules and resource allo-
cation (e.g. manpower, test laboratories), since critical behaviors
are better understood and their correctness can be verified in sub-
sequent phases. Verification outcomes can be used to fine-tune
spacecraft operation scenarios and manuals. The overall result
of continuous verification and validation is a reduction of the
technical and program risk and a process improvement in the
engineering life-cycle.

Engineering Challenges. The development, verification and val-
idation activities are supported by a plethora of methods and
tools. Models are analysis artifacts representing (parts of) the
system behavior, but they cannot replace the system to be de-
ployed. They can be either physical (e.g. structural models,
material models), virtual (e.g. software models, thermal mod-
els) or a combination of both (e.g hardware-in-the-loop simu-
lation). Models typically abstract from detail and emphasize
a particular aspect, typically one that pragmatically supports
particular design or verification/validation activities. For exam-
ple, reliability block diagrams and fault trees focus heavily on
failure events, thereby abstracting from the nominal behavior.
Matlab/Simulink models are often used to model and simulate
continuous processes, like temperature, power and propulsion
control and omit architectural aspects. Likewise, for system
software and especially fault management, dedicated modeling
approaches and formalisms exist, like for example UML or vari-
ants thereof. These approaches by themselves do not highlight
the software’s interoperation with the remainder of the system,
especially the software’s impact on the overall system safety and
dependability aspects and vice versa. Therefore, an integrated
and coherent view is required. In this article, we address this
need with a methodology that captures both the system, the soft-
ware and their erroneous behavior in isolation, yet providing a
technique to automatically merge them into an overall system-
software model covering nominal and degraded operations. On
this model, we defined automated analysis methods that support
common-practice validation objectives in industry. Our methods
have been implemented in a formal methods toolset called the
COMPASS toolset [13].

3. The AADL Dialect

The Architecture Analysis and Design Language (AADL)
[14, 15] is an industry standard for modeling safety-critical
system architectures and it is developed and governed by the
Society of Automotive Engineers (SAE). Although standardized
by the SAE, it is backed by the aerospace community as well.
AADL provides a cohesive and uniform approach to model het-
erogeneous systems, consisting of software (e.g., processes and
threads) and hardware (e.g., processors and buses) components,
and their interactions. Our variant of AADL was designed to
meet the needs of the European space industry. It extends a
core fragment of AADL 1.0 [14] by supporting the following
essential features:

• Modeling both the system’s nominal and faulty behavior.
To this aim, AADL provides primitives to describe soft-
ware and hardware faults, error propagation (i.e., turning
fault occurrences into failure events), sporadic (transient)
and permanent faults, and degraded operation modes (by
mapping failures from architectural to service level).

• Modeling (partial) observability and the associated observ-
ability requirements. These notions are essential to deal
with diagnosability and Fault Detection, Isolation and Re-
covery (FDIR) analyses.

• Specifying timed and hybrid behavior. In particular, to
analyze continuous physical systems such as mechanics
and hydraulics, our modeling language supports contin-
uous real-valued variables with (linear) time-dependent
dynamics.

• Modeling probabilistic aspects. These are important to
specify random faults and systems repairs with stochastic
timing.

In the following, we present the capabilities of our AADL
dialect using a running example. A complete AADL specifica-
tion consists of three parts, namely a description of the nominal
behavior, a description of the error behavior and a fault injection
specification that describes how the error behavior influences the
nominal behavior. These three parts are discussed below. Due
to space constraints, we refer the interested reader to [13] for a
description of the formal semantics.

3.1. Nominal Behavior

An AADL model is hierarchically organized into components,
distinguished into software (processes, threads, data), hardware
(processors, memories, devices, buses), and composite compo-
nents (called systems). Components are defined by their type
(specifying the functional interfaces as seen by the environment)
and their implementation (representing the internal structure).
An example of a component’s type and implementation for a
simple battery device [16] is shown in Figure 2.

The component type describes the ports through which the
component communicates. For example, the type interface of
Figure 2 features three ports, namely an outgoing event port
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device Battery

features

empty: out event port;

tryReset: in data port bool default false;

voltage: out data port real default 6.0;

end Battery;

device implementation Battery.Imp

subcomponents

energy: data continuous default 1.0;

modes

charged: initial mode

while energy’ = -0.02 and energy >= 0.2;

depleted: mode

while energy’ = -0.03 and energy >= 0.0;

transitions

charged -[then voltage := 2.0*energy+4.0]->

charged;

charged -[reset when tryReset]-> charged;

charged -[empty when energy = 0.2]-> depleted;

depleted -[then voltage := 2.0*energy+4.0]->

depleted;

depleted -[reset when tryReset]-> depleted;

end Battery.Imp;

Figure 2: Specification of a battery component.

empty which indicates that the battery is about to become dis-
charged, an incoming data port tryReset which indicates that
the battery device should (attempt to) reset, and an outgoing data
port voltage which makes its current voltage level accessible
to the environment.

A component implementation defines its subcomponents, their
interaction through (event and data) port connections, the (physi-
cal) bindings at runtime, the operational behavior via modes, the
transitions between them, which are spontaneous or triggered
by events arriving at the ports, and the timing and hybrid be-
havior of the component. For example, the implementation of
Figure 2 specifies the battery to be in the charged mode when-
ever activated, with an energy level of 100% as indicated by
the default value of 1.0. This level is continuously decreased
by 2% (of the initial amount) per time unit (energy’ denotes
the first derivative of energy) until a threshold value of 20%
is reached, upon which the battery changes to the depleted

mode. This mode transition triggers the empty output event,
and the loss rate of energy is increased to 3%. Moreover, the
voltage value is regularly computed from the energy level
(ranging between 6.0 and 4.0 [volts]) and made accessible to
the environment via the corresponding outgoing data port. In
addition, the battery reacts to the tryReset port to decide when
a reset operation should be performed in reaction to faulty
behavior (see the description of error models below).

In general, the mode transition system —basically a finite-
state automaton— describes how the component evolves from
mode to mode while performing events. Invariants on the val-
ues of data components (such as “energy >= 0.2” in mode
charged) restrict the residence time in a mode. Trajectory

system Power

features

alert: out data port bool observable;

end Power;

system implementation Power.Imp

subcomponents

batt1: device Battery in modes (primary);

batt2: device Battery in modes (backup);

mon: device Monitor;

connections

data port batt1.voltage -> mon.voltage

in modes (primary);

data port batt2.voltage -> mon.voltage

in modes (backup);

data port mon.alert -> alert;

data port mon.alert -> batt1.tryReset

in modes (primary);

data port mon.alert -> batt2.tryReset

in modes (backup);

modes

primary: initial mode;

backup: mode;

transitions

primary -[batt1.empty]-> backup;

backup -[batt2.empty]-> primary;

end Power.Imp;

Figure 3: The complete power system.

equations (such as those associated with energy’) specify how
continuous variables evolve while residing in a mode. This
is akin to timed and hybrid automata [17]. Here we assume
that all invariants are linear. Moreover we constrain the deriva-
tives occurring in trajectory equations to real constants, i.e., the
evolution of continuous variables is described by simple linear
functions.

A mode transition is given by m-[ e when g then f]-> m′.
It asserts that the component can evolve from mode m to mode
m′ upon occurrence of event e (the trigger event) provided that
guard g, a Boolean expression that may depend on the compo-
nent’s (discrete and continuous) data elements, holds. Here “data
elements” refers to (both incoming and outgoing) data ports and
data subcomponents of the respective component. On transiting,
the effect f which may update data subcomponents or outgoing
data ports (like voltage) is applied. The presence of event e,
guard when g and effect then f is optional. If absent, e defaults
to an internal event, g to true, and f to the empty effect.

Mode transitions may give rise to modifications of a compo-
nent’s configuration: subcomponents can become (de-)activated
and port connections can be (de-)established. This depends on
the in modes clause, which can be declared along with port
connections and subcomponents. This is demonstrated by the
specification in Figure 3, which shows the usage of the bat-
tery component in the context of a redundant power system.
It contains two instances of the battery device, namely batt1

and batt2, being respectively active in the primary and the
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device Monitor

features

voltage: in data port real;

alert: out data port bool;

end Monitor;

device implementation Monitor.Imp

flows

alert := (voltage < 4.5);

end Monitor.Imp;

Figure 4: Specification of the monitor.

backup mode. The mode switch that initiates reconfiguration
is triggered by an empty event arriving from the battery that is
currently active. The data ports are reconfigured too in this ex-
ample. The voltage port of batt2 is connected to the overall
power system once switched to the backup mode.

A similar reconfiguration is also performed for the alerts
from the monitor component, which checks the current voltage
level and raises an alarm if it falls below a critical threshold of
4.5 [volts]. Its specification is shown in Figure 4; it employs
another modeling concept, a so-called flow. A flow establishes a
direct dependency between an outgoing data port of a component
and (some of) its incoming data ports, meaning that a value
update of one of the given incoming data ports immediately
causes a corresponding update of the outgoing data port.

3.2. Error Behavior
Error models are an extension to the specification of nominal

models [18] and are used to conduct safety and dependability
analyses. For modularity, they are defined separately from nomi-
nal specifications. Akin to nominal models, an error model is
defined by its type and its associated implementation.

An error model type defines an interface in terms of error
states and (incoming and outgoing) error propagations. Error
states are employed to represent the current configuration of
the component with respect to the occurrence of errors. Error
propagations are used to exchange error information between
components. They are similar to input and output event ports,
but differ in that error events are matched by identifier rather
than by an explicit declaration of an event port connection.

An error model implementation provides the structural details
of the error model. It is defined by a (probabilistic) machine
over the error states declared in the error model type. Transitions
between states can be triggered by error events, reset events, and
error propagations.

Figure 5 presents a basic error model for the battery device.
It defines a probabilistic error event, fault, which occurs once
every 1000 time units on average. Whenever this happens, the
error model changes into the dead state. In the latter, the battery
failure is signaled to the environment by means of the outgo-
ing error propagation batteryDied. Moreover, the battery is
enabled to receive a reset event from the nominal model to
which the error behavior is attached. It causes a transition to
the resetting state, from which the battery recovers with a
probability of 1

5 , and returns to the dead state otherwise.

error model BatteryFailure

features

ok: initial state;

dead: error state;

resetting: error state;

batteryDied: out error propagation;

end BatteryFailure;

error model implementation BatteryFailure.Imp

events

fault: error event occurrence poisson 0.001;

works: error event occurrence poisson 0.2;

fails: error event occurrence poisson 0.8;

transitions

ok -[fault]-> dead;

dead -[batteryDied]-> dead;

dead -[reset]-> resetting;

resetting -[works]-> ok;

resetting -[fails]-> dead;

end BatteryFailure.Imp;

Figure 5: Specification of the Battery error model.

3.3. Fault Injection

As error models bear no relation with nominal models, an
error model does not influence the nominal model unless they
are linked through fault injection.

A fault injection describes the effect of the occurrence of an
error on the nominal behavior of the system. More concretely,
it specifies the value update that a data element of a component
implementation undergoes when its associated error model en-
ters a specific error state. To this aim, each fault injection has
to be given by the user by specifying three parts: a state s in
the error model (such as dead in Figure 5), an outgoing data
port or subcomponent d in the nominal model (such as voltage
in Figure 2), and the fault effect given by the expression a

(such as the value 0, indicating the collapse of power). Multiple
fault injections between error models and nominal models are
possible.

The automatic procedure that integrates both models and the
given fault injections, the so-called model extension, works as
follows. The principal idea is that the nominal and error models
are running concurrently. That is, the state space of the extended
model consists of pairs of nominal modes and error states, and
each transition in the extended model is due to a nominal mode
transition, an error state transition, or a combination of both (in
case of a reset operation). The aforementioned fault injection
becomes enabled whenever the error model enters state s. In
this case the assignment d := a is carried out, i.e., the data
subcomponent d is assigned with the fault effect a. This error
effect is maintained as long as the error model stays in state
s, overriding possible assignments to d in the nominal model.
When s is left, the fault injection is disabled (though another
one may be enabled). An example of an extended model can be
found in [13].
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4. The COMPASS Toolset

The COMPASS toolset is the result of a significant implemen-
tation effort carried out by the COMPASS Consortium. The GUI
and most subcomponents are implemented in Python, using the
PyGTK library. Pre-existing components, such as the NuSMV
and MRMC model checker, are instead written in C. Overall,
the core of the toolset consists of about 100,000 lines of Python
code.

Figure 6 shows the functionality of the toolset. COMPASS
takes as input one or more AADL models, and a set of proper-
ties. The latter are provided in the form of instantiated property
patterns [19, 20], which are templates containing placeholders
that have to be filled in by the user. The COMPASS toolset
provides templates for the most frequently used patterns, that
ease property specifications by non-experts through hiding the
details of the underlying temporal logic. The tool generates
several outputs, such as traces, fault trees and FMEA tables,
diagnosability and performability measures.

The toolset builds upon the following main components.
NuSMV [21, 22] (New Symbolic Model Verifier) is a symbolic
model checker that supports state-of-the-art verification tech-
niques such as BDD-based and SAT-based verification for CTL
and LTL [4]. MRMC [23, 24] (Markov Reward Model Checker)
is a probabilistic model checker that supports the analysis of
discrete-time and continuous-time Markov reward models. Spec-
ifications are written in PCTL (Probabilistic Computation Tree
Logic) and CSL (Continuous Stochastic Logic [5], a probabilis-
tic real-time version of CTL). SigRef [25] is used to minimize,
amongst others, Interactive Markov Chains (IMC) [26] based
on various notions of bisimulation. It is a symbolic tool us-
ing multi-terminal BDD representations of IMCs and applies
signature-based minimization algorithms. A walkthrough of the
toolset in terms of its screenshots in shown in Figure 7.

The tool also supports a graphical notation of our AADL
dialect, that is a derivation of the AADL graphical notation [18].
We developed a graphical drawing editor enabling engineers to
construct models visually using the adopted graphical notation.
The editor is called the COMPASS Graphical Modeler and is
part of the COMPASS toolset.

4.1. Functional Correctness

COMPASS supports random and guided model-based simu-
lation of AADL models. Guided simulation can be performed
by choosing either the next transition to be taken, or a target
value for one or more variables. The generated traces can be
inspected using a trace manager that displays the values of the
model variables of interest (filtering is possible) for each step.

Property verification is based on model checking [4], an au-
tomated technique that verifies whether a property expressed in
temporal logic, holds for a given model. Symbolic techniques
[27–29] are used to tackle the problem of state space explosion.
COMPASS relies on the NuSMV model checker, which sup-
ports both BDD-based and SAT-based verification for finite-state
systems, and SMT-based verification techniques for timed and
hybrid systems, based on the MathSAT solver [30, 31]. On refu-
tation of a property, a counterexample is generated, showing an

execution trace of the model violating the property. An example
of this is shown in Figure 7d. Finally, it is possible to run dead-
lock checking, in order to pinpoint deadlocks (i.e., states with no
outgoing transitions) in the model.

4.2. Safety Assessment

COMPASS implements model-based safety assessment tech-
niques, based on symbolic model checking [32–35], and sup-
ports traditional techniques such as Failure Mode and Effects
Analysis (FMEA) [36] and Fault Tree Analysis (FTA) [37].
FMEA is an inductive technique that starts by identifying a
set of (combinations of) failure modes and, using forward rea-
soning, assesses their impact on a set of system properties. The
results are summarized in an FMEA table. It is also possible to
generate dynamic FMEA tables, namely to enforce an order of
occurrence between failure modes. FTA is a deductive technique,
which, given a top-level event (TLE), i.e., the specification of an
undesired condition, constructs all possible chains of basic faults
that contribute to its occurrence. Pictorially, these chains are
organized in a fault tree with a two-layer logical structure, corre-
sponding to the disjunction of its minimal cut sets [35] (MCSs),
where each MCS is a conjunction of basic faults. COMPASS
also supports the generation of dynamic fault trees [38], where
ordering constraints between basic faults are represented using
priority AND (PAND) gates. Figure 7c depicts a simple fault
tree for the power system model of Section 3, where the top
level event is “batt1.voltage < 4.0 and batt2.voltage

< 4.0”. The tree shows that the only cause that can lead to the
occurrence of TLE is when both batteries die.

4.3. Diagnosability and FDIR Analysis

The COMPASS toolset supports diagnosability and FDIR
(Fault Detection, Isolation and Recovery) effectiveness analysis.
These analyses work under the hypothesis of partial observabil-
ity. Variables and ports in our AADL dialect can be declared to
be observable (see, e.g., the data port alert in Figure 3).

Diagnosability analysis investigates the possibility for an
ideal diagnosis system to infer accurate and sufficient run-time
information on the behavior of the observed system. The COM-
PASS toolset follows the approach described in [39], where the
violation of a diagnosability condition is reduced to the search
of critical pairs in the so-called twin plant model, i.e., a pair of
executions that are observationally indistinguishable but hide
conditions that should be distinguished. As an example, prop-
erty “batt1.voltage < 4.0 and batt2.voltage < 4.0”
is not diagnosable, as the alert observable does not allow to
distinguish the case where the batteries’ voltages are low from
the case where they are depleted through use. If we add the ob-
servable “alert2 := (voltage < 4.0)”, then the property
becomes diagnosable. Using techniques similar to those used
for computing MCSs, it is also possible to automatically synthe-
size a set of observables that ensure diagnosability of a given
model [40].

FDIR effectiveness analysis is a set of analyses carried out on
an existing fault management subsystem. Fault detection is con-
cerned with detecting whether a given system is malfunctioning,
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Figure 6: Functional view of the COMPASS Platform.

namely searching for observable signals such that every occur-
rence of the fault will eventually make them true. As an example,
observable alert is a detection means for property “batt1.
voltage < 4.0 and batt2.voltage < 4.0”. Fault isola-
tion analysis aims at identifying the specific cause of malfunc-
tioning. It generates a fault tree that contains the minimal expla-
nations that are compatible with the observable being true. As
an example, observable alert has two possible failure explana-
tions: either batt1 has died, or batt2 has died. The latter fail-
ure, that batt2 has died, is not dependent on the death of batt1,
since the switch-over to the second battery can also occur by nat-
ural depletion of the first battery. Finally, fault recovery analysis
is used to check whether a user-specified recoverability property
holds. For instance, property “always (batt1.voltage

< 4.4 implies eventually batt1.voltage > 5.5)” is
true in the nominal model, but it is false when error behavior is
taken into account, as a battery may die.

4.4. Performability Analysis

We use probabilistic model checking techniques [4, Ch. 10]
for analyzing a model on its performance. The COMPASS
toolset in particular supports performance properties expressed
in the probabilistic pattern system by [20]. It allows for the for-
mal specification of steady-state, transient probabilities, timed
reachability probabilities and more intricate performance mea-
sures such as combinations thereof. Examples of typical per-

formance parameters are “the probability that the first battery
dies within 100 hours” or “the probability that both batteries
die within the mission duration”. These properties have a direct
mapping to Continuous Stochastic Logic (CSL) [5] and are input
to the underlying probabilistic model checker.

The probabilistic model checker furthermore requires a
Markov model as input. This is obtained from the extended
model through several steps. First, the extended model’s reach-
able state space is generated through an exhaustive symbolic
exploration. Second, the probabilistic rates as specified in the
error models (cf. Section 3.2) are interwoven through the state
space by replacing the transition label with the associated prob-
abilistic rate. The resulting state space is a symbolic represen-
tation of an Interactive Markov Chain, i.e., a Continuous-Time
Markov Chain (CTMC) that may exhibit non-determinism [26].
This IMC is passed through the third phase, in which its size
is reduced using weak bisimulation minimization [41, 42]. In
this last step, the IMC may turn into a CTMC. In the final phase
the CSL formulae are extracted from the performance require-
ments and then together with the CTMC are fed to the MRMC
probabilistic model checker, to compute the desired probabili-
ties. The result is a graph showing the cumulative distribution
function over the time horizon specified in the performance re-
quirement. In case the resulting IMC from the model does not
yield a CTMC after bisimulation minimization, new analysis
techniques using real-time stochastic games can be used [43].
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(a) Adding a fault injection. (b) Adding a property.

(c) A generated fault tree. (d) A counterexample from model checking.

Figure 7: Walkthrough of the COMPASS toolset using the battery model (cf. Section 3) as an example.

These techniques are planned to be integrated into the toolset.
Similar techniques are also used for fault tree evaluation, i.e.,
computing the probability of the top-level event in dynamic fault
trees [38].

5. The Satellite Platform

Evaluations of the COMPASS toolset have been conducted
during its development on subsystem case studies. More about
this is reported Section 8. Afterwards, we wanted to scale up
and see how well the technology handles a system-level design.
At the European Space Agency, we initiated a pilot where we
modeled the full satellite platform in development during its
early design stage. This pilot was received well, resulting in
a successor pilot project where we modeled the same satellite
platform in a later design stage. These pilot projects are subse-
quently referred to as respectively the phase B and phase C pilot
projects. This section will elaborate the satellite itself.

5.1. Platform, Payload and Subsystems

At the highest conceptual level, the satellite is composed of
the payload and the platform. The payload comprises mission-
specific subsystems and the platform contains all subsystems
needed to keep the satellite orbiting in space. The payload is
usually designed and tailored from scratch with the mission
needs (e.g., weather or telecommunication satellite), whereas
for the platform lots of design heritage applies. For this reason,
our pilot project focuses on the platform, as this might benefit
future projects too.

The platform is comprised of several subsystems. It contains
for example the control & data unit (CDU) which can be viewed
as the main computer. It furthermore comes with an electric
power system (EPS), which is typically a combination of solar
arrays and batteries. The attitude & orbit control system (AOCS)
is equipped with several kinds of sensors, like Sun sensors, Earth
sensors and star trackers, as well as actuators, like magnetic

8



torque rods, thrusters (OCS) and reactionwheels for orienting
and positioning the satellite. There is also a radio system called
the telemetry, tracking & control (TT&C). It is the interface to
ground control stations located on Earth.

5.2. Fault Management

The majority of these subsystems are designed with certain
degrees of fault tolerance, depending on the criticality of the
subsystem. Hot and cold redundancies with reconfigurations,
voting algorithms, correcting codes and compensation proce-
dures are part of comprehensive strategies for achieving fault
tolerance. In the extreme case, the satellite should survive a
certain number of days without ground intervention assuming
no additional failure occurs. As faults could occur at any level in
the system’s hierarchy (system, subsystem, equipment), the fault
management system obeys a cross-cutting design according to
the FDIR paradigm. This paradigm separates fault management
into three functions. The function of fault detection continu-
ously monitors the system and in case of anomalous values,
emits appropriate events to react upon them. Monitoring is de-
centralized and performed at all levels of the system’s hierarchy.
After emitting fault detection events, fault isolation kicks in.
This function is responsible for identifying the affected system’s
scope by determining the cause of the fault events. The func-
tion of fault recovery then takes appropriate actions to mitigate
the fault events, and if possible, restores the subject to a nom-
inal state. As faults can occur at all levels, and as their effects
can propagate throughout the system horizontally (same level)
and vertically (across levels), the fault management system is
partitioned into five levels depending on the complexity of the
respective FDIR functions:

Level 0 Failures are associated to a single unit and recovery
can be performed by the unit itself.

Level 1 Failures are associated to a single subsystem, and an
external subsystem. The on-board software is respon-
sible for their mitigation.

Level 2 Failures are associated to multiple subsystems, and an
external subsystem. The on-board software is respon-
sible for their mitigation.

Level 3 Failures are occurring in the on-board software or
in the processor modules. Dedicated reconfiguration
modules are responsible for their mitigation.

Level 4 Failures that are not covered by lower levels and that
are completely managed by hardware.

Failures are mitigated at their appropriate level. As with most
Earth orbiting satellites, this satellite is required to be single-fault
tolerant. If a fault is detected, all fault monitoring is disabled
and the isolation and recovery of the detected fault is prioritized.
As such, it is designed to handle one fault at a time.

6. Phase B Pilot Project

The first pilot project was conducted in parallel to the satel-
lite’s early design, which is phase B in Figure 1. The total
duration of the pilot was six months including the learning curve
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Figure 8: Decomposition of the satellite at phase B.

of becoming acquainted with AADL, COMPASS and the space
systems engineering domain. The modeler was Master-level
educated with basic knowledge of model checking but without
prior knowledge of the COMPASS toolset nor of space systems
engineering. Due to the confidential nature of the case, the
model is not publicly available.

6.1. Objectives
We started our pilot at the preliminary design review stage

(PDR) of the satellite project, where the details of design started
to mature. In the spacecraft engineering lifecycle, several ob-
jectives have to be met in order to proceed to the critical design
stage. A selection of these objectives are of interest to us. Fore-
most, we wanted to check the compliance of the preliminary
design with the functional and operational requirements and
their justifications. Second, we wanted to check this too for
the reliability, availability, maintainability and safety (RAMS)
recommendations. And third, we paid particular attention to
the consistency of the hardware/software redundancies and fault
management concepts. For the scope of this pilot, we investi-
gated the suitability of our toolset to support these verification
and validation objectives. We aimed to develop best modeling
practices, discover strengths and weaknesses of the theory and
techniques underlying the toolset and understand how the toolset
supplements and/or replaces existing practices in the spacecraft
design phase.

The satellite’s development team was on a strict schedule, and
hence it would have been unwise to inject novel development
approaches – like our initiative – into the production process.
Instead, we ran our pilot project in parallel with the actual devel-
opment as an experimental side-track. This benefited us, because
we were not presented with fully crystallized and matured de-
sign documentations, but with volatile design information that
was undergoing improvement and refinement. Findings in our
pilot were therefore directly relevant and could be provided as
feedback to the satellite development team. Furthermore, we
had to learn to cope with the constant influx of updated design
details and how to continually adapt our own model to that. If
our pilot had run after the system’s design, the effort would have
become an afterthought in which design information has fully
crystallized and matured.
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6.2. Modeling Phase B
Behavior-wise, the overall composite system is described by

two important modes of satellite operation: nominal and safe.
While being in the nominal mode, the system is functioning in
nominal conditions. Upon faults, recoveries are initiated for
resuming nominal operation. If these recoveries fail, the satellite
then transits into safe mode for which the system reconfigures
itself for survival until ground can perform an intervention. This
important transition has system-level effects and hence it is
critical.

During modeling, we focused on one subsystem/equipment at
a time as the design of each of them corresponds more or less
to a specific (section of a) design and a requirements document.
We progressively increased coverage by adding more detailed
subsystems to the overall model, while keeping high-level ab-
stractions or stubs for the remaining subsystems. The result
is a model containing 86 components, 937 ports, 244 modes,
20 error models, 16 recovery procedures, 3831 lines without
comments and a state space of the nominal behavior counting
48,421,100 states. In the following paragraphs, we highlight
selected lessons from our modeling effort.

Discretization. Various design aspects are often specified in
terms of ranges. Thus, for the Sun sensors, ranges are used in
degrees of Sun ray impact to determine exposure to the Sun. To
avoid a combinatorial explosion of the state space, these ranges
have been abstracted with respect to the desired functionality,
e.g., a Boolean indicating Sun exposure (or not). Enumerations
are used when there are gradations within the ranges.

Errors and Fault Injections. Our primary source for error mod-
eling is the preliminary Failure Mode and Effects Analysis
(FMEA). It lists the possible detectable failures as an event
and relates it to the effect on the system. This mapping is nearly
equal to the fault injections. It also provides the information
for constructing the error models. We found that in all cases,
the probabilistic behavior was either shaped as a single step
from an error-free state to an error state (so-called permanent
errors), or that they follow a fault-repair loop-structure on the
error-free/error states (so-called transient errors). The FMEA
also lists the failure rates. They are expressed in failures in time,
indicating the expected number of failures in 109 hours.

Assumptions. At first sight, the amount of design information
is so overwhelming that it is inconceivable to comprehend the
whole system at once, especially if one is not familiar with the
system under development. Information might be perceived as
incomplete, unclear, or wrong due to this, and this delays the
modeling process. We developed a practice of quickly contin-
uing modeling using assumptive modeling decisions. Model
elements were marked as Abstracted, along with a justification
in case the abstraction was not obvious. The annotation Assump-
tion was used to express an assumptive understanding of the
peculiar design. Model elements were annotated with Under-
specified when parts of the design documents did not provide
sufficient information to have them reflected in the model. As-
sumptive and underspecified parts could be checked later in
review meetings, where we had the opportunity to address them.

6.3. Requirements
Not all requirements at our disposal were amenable to formal

analysis. There are several reasons for this fact.
Higher-level requirements, like those from the mission def-

inition, lack the detail needed for formal validation. This can
be seen in their form, which is typically prose-like, e.g., “FDIR
functions must be active in all AOCS modes”. We focus on the
more refined system- and subsystem level requirements instead.

A significant part of the requirements do not capture behaviors,
but reflect the system’s organization. They for example state
which components should be present and which functions should
be available, but do not detail how the functions should behave.
These requirements are typically subject to refinement in detailed
design, and hence are cases of intended underspecification.

Requirements could also be out of scope for our objectives.
For example, those about the payload were left out intentionally
from our pilot because we focused on the satellite platform.
Behaviors covering these requirements are typically abstracted
in the model.

Consequently, from many thousands of requirements, a selec-
tion of 24 relevant requirements was made. They were mapped
to the specification patterns from [19, 20], which showed that
92% of them could be phrased into eight patterns. These patterns
have an underlying temporal logic form, which can be processed
by the COMPASS toolset.

6.4. Analyses
Modeling is highly intertwined with analysis, since the output

from analysis provides valuable information for possible refine-
ments of the model. The most widely-used analysis method
during modeling is model simulation, as inspection of traces is a
fast sanity check before running a resource-consuming analysis.

During all analyses, particular sets of fault injections were
disabled/enabled depending on the aim. This was necessary for
this pilot, as we observed that fault injections lead to a significant
increase of the state space (see Figure 9). The figure shows the
state space increase as a multiplication of the nominal state
space, which is 48 million states. The explanation is that a fault
injection basically yields the cross-product of the subsystem to
which the error is injected, and the error model. There is no
direct correlation between the amount of fault injections and
the increase, although there is a relation between the severity of
fault injections and the observed increase. Fault injections that
have system-level impact (e.g., processor module failures) add
more behavior than fault injections with lower-level impact (e.g.,
Earth sensor failures), as the former affect a larger fragment of
the state space. The figure in general indicates the degree of
scalability that can be expected with the computing resources
typical in 2010.

All analyses were performed on a set of identical computers
running 64-bit Linux, each with a 2.1 GHz AMD Opteron CPU
and 192 GB of RAM. A more comprehensive report on this can
be found in [7].

Functional Verification. We separated this task into two activ-
ities: discrete and real-time/hybrid verification. Sixteen prop-
erties were verified on the discrete part, taking between 224 to
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677 seconds and on average 126 MB, depending on the injected
failures. The real-time/hybrid verification activities are more
elaborate and are discussed in more depth in [7].

Safety and Dependability. The platform’s most critical event
that affects safety and dependability is the transition to safe
mode. This transition is triggered upon the occurrence of severe
failures. The design documents give a manually developed
(static) fault tree of 66 nodes explaining this behavior. Our
toolset can produce the same fault tree, but in a fully automated
manner within two hours and using 239 MB of memory. The
algorithm behind this generation is described in [35].

A FMEA table was generated in the same manner as fault
trees for associating the sensor failures with three system effects:
detection of failures, the setting of the fail-operational flag and
the transition to safe mode. The generated table did not provide
additional value to the fault tree, as it directly maps failures to the
user-provided effects. We learned here that it is more interesting
to have the toolset synthesize a mapping from failures to a chain
of effects, showing how the first effect directly caused by the
failure propagates through the system to subsequent effects and
eventually becomes a system-level failure [44].

Fault Management Effectiveness. For fault detection, we
checked which observables are triggered when the transition
to safe mode is made. This can trigger 129 observables. This
takes 19 minutes and 142 MB. Subsequently, fault isolation on
these observables takes six hours and 136 MB. Diagnosability
analysis was performed to see whether a double Earth sensor
failure is diagnosable (for the satellite operator) when the tran-
sition to safe mode occurs. Without any result, we had to stop
the analysis after seven days and consuming nearly 1400 MB at
its peak. The algorithm computing diagnosability has a much
higher time-complexity than model checking, thus explaining
this result.

Performability. Reliability requirements are usually defined as
a cumulative distribution function and state that the foreseen

reliability must be at least as good. Their probabilistic nature fits
performability analysis. On our model, we wanted to determine
the reliability of the satellite in the presence of a sensor failure.
Performability analysis however ran out of allocatable memory
after nine hours. Here, the weak bisimulation algorithm that
transforms the state space to a Markov chain is the bottleneck.
Even though the space and time-complexities are polynomial,
the state space is simply too large to handle with our current
systems.

Another approach to verifying the reliability requirements is
by computing the probabilities of the transition-to-safe-mode
fault tree which was generated during safety & dependability
analysis. This computation occurs in a split second. This ap-
proach, and its result, is coarser than the one using performa-
bility. Fault trees are essentially abstract state spaces where the
relations between the top-level-events and the failures are con-
servatively over-approximated by AND-, OR- and PAND-gates
(Priority AND). With performability on the other hand, these
relations are precisely preserved, which however comes with
increased complexity when the underlying Markov chain needs
to be determined.

6.5. Discussion

With regard to supporting the verification & validation objec-
tives of the preliminary design review, we encountered several
inconsistencies in the design documents. Most of them were
found during modeling, due to the critical interpretation of the
design documents. They were reported to the satellite develop-
ment manager and were subsequently corrected. This results
from the benefit of having a formally coherent modeling lan-
guage that captures and covers the system, software and safety
aspects in a single model.

As with the suitability of the toolset, not being exposed to
the underlying logic and model checking tools was found to
be pleasant. For safety and dependability analyses, the perfor-
mance and the features are sufficient. The usefulness of FMEA
however can be improved (as stated in Section 6.4). The pilot
also showed that theoretical improvements to the algorithms un-
derlying performability and diagnosability are needed to make
them tractable for larger models.

The pilot also delivered a deeper insight into best formal mod-
eling practices. We found that assumptive modeling as well
as maintaining traceability data are key to keep the pace. We
furthermore drafted a set of abstraction guidelines as well as
commonly occurring modeling patterns to aid beginning mod-
elers. At the moment, they are tailored to this pilot, but could
be further developed to become more generic. These guidelines,
and the satellite model itself, can be used to kickstart subsequent
formal modeling activities.

7. Phase C Pilot Project

The second pilot was conducted in a time frame of one year,
during the Critical Design Review stage (CDR) of the satellite
project, and consequently the design details were much more
mature than in the previous pilot. The modeler had a PhD-level
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education in software engineering and prior experience with
using model checkers.

7.1. Objectives

Due to the increase of maturity, the specifications at phase C
were roughly twice as detailed as their counterpart descriptions
in phase B. Our main objectives are summarized as the following
two: firstly, we wanted to investigate strategies for modeling
satellites with twice the amount of design detail; and second,
we wanted to focus on diagnosability analyses for determining
the sufficiency of the sensor configuration. The latter was not
possible in the previous pilot, due to the size of the obtained
state space.

The main source of information for the satellite system be-
havior was the Critical Design Review (CDR) documents that
refine the documents used for the phase B pilot project. The fault
management design in this phase was still undergoing changes.
Error modeling was based on CDR’s requirements baseline for
the FDIR routines, and was subject to changes for the duration
of the pilot.

7.2. Modeling Phase C

The developed model focused on the platform of the satellite
system, as in the previous pilot and for the same reasons. The
organization of components in the model was slightly altered.
More specifically, the Control and Data Unit (CDU) was log-
ically modeled as a component embedded in the Attitude and
Orbit Control System (AOCS). Physically however, the AOCS
runs on a processor module inside the CDU. The latter inter-
faces with sensors and actuators used by the AOCS through I/O
boards. Modeling this organization causes all sensor and actu-
ator interfaces being forwarded by port connections inside the
CDU, increasing the model’s size. This is avoided by modeling
the CDU inside AOCS, such that the sensors and actuators used
by the AOCS are its direct subcomponents. Most components
were modeled from scratch using the PDR model (from Sec-
tion 6) as an inspirational reference. Changes and additional
details (e.g., Course Earth and Sun Sensors, and Ground com-
mands) of the refined satellite platform design were reflected in
the new model.

A bottom-up design approach was followed to model the
subsystems of the satellite. Each subsystem was then top-down
refined by breaking it down into its equipment. The equipment
were verified individually. This approach enables a preliminary
analyses of each subsystem model. Also, we could model more
detail of the functionality per subsystem, without dealing with
the state space explosion of the overall system model. And most
important, the satellite fault management design documents at
this phase were grouped and organized per subsystem.

The remainder of this section surveys the full satellite model
and provides more detail for one of the subsystems, namely the
Electric Power System (EPS). Further detail of this model is
confined to confidentiality restrictions, as in the previous pilot
project.

Scope Metric Count

Model

Components 246
Ports 1,565
Modes 242
Error models 173
Recoveries 162
Nominal state space 2,341
LOC (without comments) 6,357

Requirements

Propositional 28
Absence 7
Universality 5
Response 19

Table 1: Metrics of the full satellite phase C platform model and requirements.

7.2.1. Full Platform
The overall system can be in three different modes: a nominal,

an intermediate safe and an ultimate safe mode. The purpose
of the nominal mode is the same as the one considered in the
phase B pilot. The safe modes have a slightly refined mean-
ing. Depending on the mission scenario, a transition to the
intermediate safe mode means that ground systems continue
supplying commands without platform service warranty. The ul-
timate safe mode is for handling critical failures while ensuring
the satellite’s safety. In the remainder of this section the term
non-nominal mode refers to the two safe modes.

Table 1 illustrates the size of the developed satellite model in
terms of the number of components that comprise it, the lines
of code and other aspects. This model resulted in a state space
of 2341 states for the nominal behavior, which is many orders
of magnitude smaller than the model state space of the previous
pilot. The difference is attributed to three main factors, namely
the experience gained in the previous pilot, the longer time frame
and the given emphasis on model efficiency. However, the model
encompassing erroneous behaviors still has a considerable state
space size. We designed 173 error models for a series of transient
and permanent errors, whose combinations correspond to a pile
of fault configurations. From the many requirements, 59 were
behavioral and within the scope of our model. The selected
requirements were mapped to the specification patterns shown
in the lower part of Table 1.

7.2.2. Power Subsystem
For spacecraft systems in general, the Electrical Power Sub-

system (EPS) is a major driver towards the overall system relia-
bility [45]. We focus on it in this section. It is responsible for
generating, storing, conditioning and the provision of electric
power to all on-board satellite units. Its decomposition is shown
in Figure 10 and it consists of the following main subunits:

Power Conditioning and Distribution Unit (PCDU) receives the
electric power from the solar array and/or battery and distributes
it to the satellite subsystems through the Latching Current Lim-
iter (LCL) and the resettable variants of it, called R-LCL.

Battery stores the electric power provided by the solar array
during Sun visibility periods and provides power to the satellite
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Figure 10: Decomposition of the pilot’s satellite Power System at phase C.

subsystems during eclipse phases. It is charged and discharged
respectively by the Battery Charge Regulator (BCR) and Battery
Discharge Regulator (BDR).

Main Error Amplifier (MEA) stabilizes the power to the default
voltage.

Solar Array delivers power to the satellite subsystems through
the PCDU. It supplies the satellite during Sun exposure and in
parallel charges the battery after the eclipse phases.

PCDU Telemetry and Telecommand (TMTC) controls the PCDU
with commands external to the subsystem, e.g., power on and
off, charging and discharging from the AOCS and ground con-
trol. It is designed to be redundant (i.e., “a” equipment and “b”
equipment).

The FI components and the containers in Figure 10 are used
respectively for fault injection and packaging of subsystems with
common behavior. All these are further discussed in the next
section. The size of EPS was close to 15% of the overall size of
the full model (i.e., 38 components, 245 ports, 21 modes and 15
errors models).

The electric power subsystem is susceptible to failures at all
fault management levels (see also Section 6.2). From the 15
error models, four are handled as level 0 failures, one is handled
as a level 1 failure, five are handled as level 2 failures and five
are handled as level 3 and 4 failures. Apart from level 0 and
level 1 failures, all other failures result in critical system-level
effects and hence a transition is made into non-nominal mode.

7.3. Modeling Effectiveness

Key to an effective model is balancing the detail to be taken
into account against the resulting complexity. A very detailed
model captures more useful behaviors of the satellite, while
reduction of the model’s complexity is typically achieved by
abstracting (parts of) the system’s behavior. Apart from the
existing modeling strategies developed for the phase B pilot (cf.

	  
Figure 11: Battery subsystem with fault injections.

Section 6.2), we developed two additional strategies to cope
with the increased detail of the phase C design.

The foremost modeling strategy is the use of dedicated fault
injection components in the nominal model, in order to separate
erroneous data effects from nominal data effects. This strategy
came initially from model behavior observations, due to the
experienced language limitations (fault injections could only
be expressed based on the mode state of a component or based
on logical constraints of its supercomponent). More precisely,
we observed that upon injecting failures directly on the nomi-
nal model, we were actually introducing additional unspecified
behavior to the system (e.g., discharging the battery, while the
satellite system was powered off).

Figure 11 shows an example with the behavior of the Battery
component, using the AADL graphical notation of the COM-
PASS toolset. It uses rounded boxes to represent system compo-
nents, circles to represent modes, arrows to represent transitions
and (filled/open) triangles to represent (data/event) ports. The
battery voltage output is affected by nominal data effects such
as charge and discharge if, and only if, a logical constraint is
fulfilled (e.g., subsystem is powered on and no fault is detected).
These constraints initially limit the state space explosion. Fur-
thermore, the battery voltage output is affected by erroneous
data effects if, and only if: (i) it is attached to the Battery_fi
fault injection subcomponent and (ii) there is a transition due
to additional logic constraints (e.g., fault is detected). Extra
constraints in model design like the aforementioned one further
limit the state space explosion.

The Battery component is represented as a container respon-
sible for the fault injection interface, while at the same time
detecting faults using the fault detected observable. In case of
an injected error on the energy output port of the Battery_fi
subcomponent (e.g., “Battery_fi.energy := 25”), the fol-
lowing operations are executed:

1. Battery_fi.energy takes a new value, different from
the one specified by Battery.voltage and updates
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the Battery.tmp_power. At this point, the Battery.

voltage is still unaffected, since it is updated through
a transition from Battery.tmp_power;

2. the Battery.fault_detected observable becomes true
and the system executes only error behavior operations;

3. the Battery_fi.b_reset event is then triggered and si-
multaneously the Battery_fi changes from the initial
idle mode to the can_reset mode, while Battery.

voltage is updated with the injected faulty value;
4. if the injected error is a transient one, then a reset event is

triggered and Battery_fi changes from the can_reset
mode to the idle one. Otherwise, Battery_fimode stays
in can_reset, and no further fault injection is allowed
(permanent error);

5. the Battery.fault_detected observable turns to false
and the system executes only nominal behavior operations.

In Figure 11, the b_reset event updates the values of
the shown component and consequently resets the value of
the Battery.fault_detected observable to false, while the
reset event resets the state of the fault injection component to
its initial idle mode.

The second modeling strategy adopted in this pilot is pack-
aging functionality in containers. A rule of thumb towards this
direction is that the time required for analysis increases along
with the number of components. By packaging coupled function-
ality in a supercomponent, the state space can be reduced when
specifying additional erroneous behavior at the supercomponent
level. Consider for example what is shown in Figure 10. The
Latching Current Limiters (LCLs) and the Resettable LCLs are
packaged in a single container respectively, instead of separate
containers for each subcomponent.

We also realized that the number of transition events in the
model increased the analysis time significantly. It was possible
to avoid this cost by refactoring these events into flows and data
ports. However, since the discussed performance degradation
was a result of the way the COMPASS toolset transforms AADL
events into NuSMV language constructs, this model improve-
ment cannot be considered as a general modeling strategy.

The model’s efficiency was determined by computing the
reachable states. These computations took place on a worksta-
tion with two 2.7 GHz Intel Xeon processors and 48 GB RAM
running 64-bit Linux. The results are shown in Table 2. The
diameter is the depth of the state space given as number of tran-
sitions. Noteworthy here is the difference in execution time
between the scenarios without fault injections and those with
one permanent fault injection in the solar arrays. The latter has
a system-level impact and opens up new behaviors compared to
the nominal scenario. However, as BDD methods are used to
compute the reachable states, the needed time depends heavily
on BDD variable reordering strategies, which may turn out better
for particular models.

7.4. Diagnosability Efficiency

In the Phase B pilot, diagnosability analysis was deemed
intractable as it needed more computing resources than we had

available. In this pilot, we investigated methods to overcome
this by a more efficient model.

Besides the general improvement of the model’s efficiency,
we investigated the idea of local diagnosability analysis. Instead
of considering the whole satellite platform, we exploited the
system hierarchy and the containers to create smaller subsys-
tem models, on which we conducted diagnosability analysis.
Then either permanent or transient errors were injected in those
models and it was checked whether they could be diagnosed.
The results of these analyses are shown in Table 3. The column
“Model” is either full, EPS, or AOCS, meaning respectively the
full satellite platform, or only the electric power subsystem or
only the attitude and orbit control subsystem.

The table shows that, in general, failure scenarios considering
permanent errors require less analysis time and less memory
than scenarios with transient errors. This is also visible when
the model’s state spaces of respectively transient and permanent
errors are compared (cf. Table 2).

In two cases we still run out of memory (indicated by o.o.m.
in the memory column), namely when double permanent errors
are injected in the Earth sensors and a single transient error in
the main error amplifier (MEA). Both are on the full satellite
platform model. In those two cases no conclusion can be drawn
regarding the diagnosability of the failure.

One scenario is undiagnosable. The cause for this is the no-
tion of delayed diagnosis. The double permanent errors cause
the diagnosis property, the setting of the fail-operational flag, to
change. Yet the observables are not directly changed along, but
with a delay. The COMPASS toolset detects this as an undiag-
nosable discrepancy, as after setting the fail-operational flag to
true, the observables are the same as when the flag was false.
The satellite design however specifies that the fail-operational
flag is set within a bounded delay, and this is reflected in the
model as well. The currently used diagnosability analysis algo-
rithm in COMPASS cannot measure this delay and assumes a
diagnosable model must have a zero-delay between the change
of diagnosis properties and the change of observables. To this
end, the COMPASS toolset will be enhanced in the future, in or-
der to correctly determine diagnosability for non-zero diagnosis
delays.

7.5. Discussion
The longer time frame for this pilot compared to its prede-

cessor phase B pilot, as well as the fact of having employed a
higher qualified modeler, led to a satellite platform model that
captures more detail, yet keeping it manageable for analyses.
The result is the largest and most detailed system-level formal
model of a satellite platform known to date, that can be used as
a reference for future formal modeling initiatives. In addition
to existing identified modeling strategies (see Section 6.2), two
more strategies were added to further avoid the state space ex-
plosion. Additionally, special focus was put on diagnosability
analysis, which in the phase B pilot was deemed untractable.
Diagnosability analysis becomes increasingly important in the
engineering life-cycle as fault management designs become
more involved to meet mission demands. We experimented with
local diagnosability analyses and with different failure scenarios.
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Scenario Diameter Reachable States Time (hours) Memory (GB)

No fault injections 20 2341 6.0 1.2
Permanent fault in solar array 84 403,220,000 1.5 3.6
Transient fault in solar array 142 135,895,000,000 180.0 14.0

Table 2: Reachable states on full satellite model.

Failure scenario Model Diagnosis property Outcome Time (sec) Memory (MB)

Single transient in MEA Full Fault detected n.a. 565383 o.o.m.
Single permanent in battery Full Fault detected Diagnosable 383891 36905
Single permanent in battery EPS Fault detected Diagnosable 259 76
Single transient in battery EPS Fault detected Diagnosable 577 88
Double permanent in Earth sensors Full Fail-operational flag is set n.a. 515836 o.o.m.
Double permanent in Earth sensors AOCS Fail-operational flag is set Undiagnosable 164049 28775
Single transient in solar array EPS Fault detected Diagnosable 775 93

Table 3: Diagnosability analysis report.

The outcome resulted in a clear need for an enhanced diagnosal-
ity analysis algorithm that also accounts for delayed diagnostic
means.

8. Related Work

Several works have been reported in the literature that focus
on modeling languages, formal semantics, analysis algorithms
and tools similar to the COMPASS approach. The most closely
related results are discussed in the following paragraphs.

High-Level Specification Languages. Several research works
focus on high-level modeling languages like the Architecture
Analysis and Design Language (AADL). The Unified Modeling
Language (UML) [46] is found in many applications. A survey
by [47] overviews its use for safety and dependability analysis.
It also has been customized to fit the system engineering do-
main, leadding to a language called SysML [48]. Unfortunately,
SysML inherits the weaknesses of UML, with the most serious
one for our setting being the loose formalism for nominal and er-
ror behavior modeling. In [49], the authors introduce a toolchain
in order to model system software in a component-oriented man-
ner, using the Focus language. Focus models can be formally
verified based on a translation to Isabelle/HOL and are the basis
for the generation of C code implementing their behaviour. The
COMPASS toolset does not provide similar functionality, but on
the other hand, adds a safety and dependability dimension to the
modeling and analysis of nominal system software.

Our AADL dialect has some similarities with existing ap-
proaches for the specification of component-based systems, such
as interaction systems [50] and constraint automata [51], as
well as formalisms for composing automata, such as interface
automata [52] and hybrid I/O automata [53]. A recent work
by [54] focused on AADL aiming to map the time-constrained
event-behavior of AADL’s mode transitions to timed Petri nets.
The authors also mention the possibility to use colored Petri nets,
in order to handle data-dependent constraints. More recently,

in [55], the authors provide a denotational semantics for a sub-
set of AADL and its Behavior Annex. However, none of the
aforementioned works offers the necessary expressiveness for
modeling reconfiguration of components and port connections
and for explicitly representing data elements with hybrid aspects,
multi-way communication and probabilistic error behavior.

Formal Semantics. Apart from our AADL dialect, an approach
towards defining a formal semantics for AADL that is worth
mentioning is the one reported in [56]. It introduces an opera-
tional semantics of a subset of AADL by giving a translation into
the BIP component framework, thus realizing a possibility to per-
form timed analyses. In [57], the Arcade framework is presented
that allows probabilistic analysis of the modeled architectures.
Another framework for dependability analysis of AADL mod-
els is described in [58]. Based on a translation of AADL into
generalized stochastic Petri nets (GSPNs), the authors present
transient and steady-state analysis of AADL models with error
behaviour. However, none of the aforementined works combines
timed or hybrid extensions and probabilistic or safety analyses
(FDIR, FMEA, FTA) into a single framework.

A related area of active research interest is the incorporation
of probabilistic information into various formalisms. In [59],
a probabilistic extension of the Statecharts semantics is pro-
posed. The approach supports different semantic models, such
as stochastic Petri nets and probabilistic automata. In [60], the
author introduces a probabilistic extension of the component-
based modeling formalism Reo [61], which in fact targets only
software components and does not account for hardware/soft-
ware co-design aspects. Finally, in [62] the authors present an
object-oriented approach towards dependable co-design based
on UML and the Parallel Object-Oriented Specification Lan-
guage.

Tools. COMPASS is not the only existing AADL based toolset.
The TOPCASED project [63] provides a toolchain that translates
AADL and its Behavior Annex into Fiacre, and from Fiacre into
timed Petri nets, which can be then model checked using the
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TINA toolbox. There is also another backend that translates
Fiacre into Lotus NT, the process algebraic language that can be
analyzed within the CADP toolbox [64]. Both Fiacre backends
cover the AADL Behavior Annex and support the analysis of
real-time properties, but as opposed to COMPASS, they do not
integrate the specification and analysis of erroneous behavior.
In [65], the authors present an ontology-based transformation of
AADL models into the Altarica formal language. Their approach
utilizes the ontology languages built-in reasoning capabilities
to bridge the semantic gap between AADL and Altarica. This
allows to detect lack of model elements and semantically incon-
sistent parts of the system design, but timed or hybrid extensions
and probabilistic analyses remain out of scope. Other worth to
mention AADL based tools are ADeS [66] for simulation of
system architectures, as well as Cheddar [67] and the Furness
toolset [68] for schedulability analysis.

Applications. In the past, other case studies have been con-
ducted within the space domain. We highlight a few of them
that bear similarity with the projects described in this paper.

In [69], a formal approach is described for the specification
of an Attitude and Orbit Control System (AOCS). Key in that
approach is that correctness properties are verified with each
refinement of the specification. The COMPASS approach allows
for incremental specification by deepening the system hierarchy,
but verifies correctness properties on a whole system architecture
at once. In our pilot projects, we cover the full satellite platform,
which includes the Attitude and Orbit Control System.

In [70], the architectures of a spacecraft and a space-based
network are analyzed with respect to their reliability under de-
graded modes of operation, also referred to as their survivability.
It employs stochastic Petri-nets as their fundamental model. In
contrast to their work, we use a high-level modeling language
for expressing the case, which we believe is more engineer-
friendly. Also, we validate properties beyond survivability, such
as correctness and performance aspects.

In [71], NASA studied the use of formal analysis techniques
for finding bugs in the Martian Rover software. They focus on
code verification of spacecraft software implementations. In
our projects we focus on the spacecraft system software design,
and analyze it from a correctness, safety & dependability and
performance perspective.

In [72], the validation of a satellite’s design is supported by
simulation of several linked models comprising parts of the
spacecraft and its Failure Detection, Isolation and Recovery
concept. The result is an integrated simulatable model of high-
fidelity upon which functional correctness properties can be
validated. Our pilot project does not reuse and link existing
models, and the fidelity of our model is comparatively lower in
order to mitigate the state space explosion problem. However,
we validate properties beyond functional correctness, covering
the safety, dependability and performance aspects.

The COMPASS toolset was also evaluated by Thales Alenia
Space, on two case studies of their satellite subsystems [6]. The
first case study relates to the definition of satellite mode manage-
ment and its associated fault management strategy. It models the
AOCS (Attitude and Orbit Control System) equipment and other

functional subsystems, and the (re-)configuration sequences, rep-
resenting sequences of commands which are sent to the AOCS
units in case of a detected failure. Injected faults include trans-
mission error, electrical default and data inconsistency. The
model was simulated, and several properties of the model were
verified using FTA and model checking. The second case study
models a thermal subsystem, consisting of thermal lines, heaters
and sensors, that regulates the satellite’s temperature by perform-
ing both active and passive regulation. The functional model,
covering the whole perimeter of the thermal regulation function,
was complemented by a more detailed model, taking into ac-
count the behavior of the thermal lines. A thermal line consists
of heater lines, safety switches and thermistors. Several forms
of redundancies are foreseen, to deal with failures. Injected
faults include stuck-at-value for sensors, no heating and always
heating for a heater, stuck-at-ON and stuck-at-OFF for a switch.
Different alternative models were built, simulated and analyzed
for correctness, reliability, safety and diagnosability capabilities
using model checking, FTA and FMEA, fault detection and fault
recovery analysis. Both subsystem case studies sparked the inter-
est in a pilot on a system-level spacecraft, which we performed
and reported the results in Sections 6 and 7.

9. Conclusions

In five years, we implemented the latest advances in (proba-
bilistic) model checking into a full-fledged graphical toolset for
formal model-based system-level design and rigorous analysis of
correctness, safety, dependability and performability properties,
and demonstrated its effectiveness for spacecraft design valida-
tion in an industrial setting. The pilot projects, described in this
article, were performed on satellite system-level and subsystem-
level designs of past and ongoing space missions. These projects
led to the definition and analysis of extremely large spacecraft
system models and resulted in an advancement of validating
spacecraft designs for correctness, safety, dependability and per-
formance based on an integrated system model. The associated
technology readiness level increased from level 1 (in 2008) to
early level 4 (in 2012). Follow-up projects are going on and
planned for, and thus further activities build upon the existing
cooperation between academia and the space industry. Even
though the COMPASS toolset is developed to meet the needs of
the space industry, its general focus on safety-critical systems
also applies to similar domains such as the automotive, aviation
and railway industries. Distribution of the COMPASS toolset
is restricted to ESA member states. The literal license, along
with manuals, tutorials and presentations are available on our
website [3].
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