
Statement of Research Paolo Bientinesi

My research interests center around the fields of scientific and high-performance com-
puting, with emphasis on automation. Research in these fields is motivated by real-world
scientific problems and deals with the development of fast and accurate numerical algorithms.
Despite the inherent interdisciplinary nature of the research, algorithms have traditionally
been sought in abstraction of both the scientific application originating the input data and
the executing architecture. Abstraction here translates to separation of concerns, which is
a limiting factor in the pursuit of superior algorithms. This is especially true today, with
the push towards innovative high-performance architectures such as multi-cores processors,
GPU, FPGAs and Cell Broadband Engine. I believe that nowadays, combining and ex-
ploiting knowledge from applications, algorithms and architectures, is not only possible, but
critical, to the progress of scientific and high-performance computing. Such a synergistic and
interdisciplinary approach is an integral component of my research efforts.

My long term research plan is twofold. On one hand I intend to lead a team of scientists
and students to study algorithms not in isolation, but in the broader context of applications
and architectures. I am fully convinced that encoding extra information and knowledge is
the route towards higher-quality algorithms. In this context, quality shall not be measured
strictly in terms of performance and accuracy; algorithms shall be evaluated by how they
enable new science and by their impact on scientific applications. High-performance compu-
tations are to become the common language in this new research paradigm; crucial to success
will be the identification of abstractions and tools to allow for both productive and efficient
algorithm & software development.

The second goal in my research agenda is automation1. Beyond seeking efficient solutions
to instances of a problem, I aim at uncovering the mechanisms leading to such solutions.
These mechanisms, once exposed, make automatic computations possible. In my mind, a
mathematical problem can be labeled as closed only when it is so well understood that any
instance could be solved by an automated system with limited, if any, human intervention. In
the years to come, I intend to pursue an even more ambitious research goal, stemming from
the following provocative statement: in the context of scientific computations, a problem is
closed only when it is so well understood that its properties can be automatically identified
and exploited in the solution process. Advances in this research line would greatly impact
both the fields of scientific and high-performance computing, and large-scale computations
in particular.

In my career, I have initiated and contributed to research projects in many different
areas of computer science. Specifically, the focus has been on theoretical and practical as-
pects of the following subjects: Digital Signal Processing [1,14], Sparse Linear Algebra [2],
Automation [6,10], High-Performance Computing [3,4,5], Numerical Linear Algebra [11,9],
Symbolic Computations [6,8], Parallel Computing [1,3,4,5,11], Software Engineering [12,13],
Computational Geometry [15], and Formal Methods [7,8,6,9]. In the next section, I overview a

1The word “automation” is sometimes used as a synonym for “fine tuning”; in contrast, in my research,
the word automation indicates the use of computers for replicating complex tasks with limited or no human
intervention. To avoid confusion, in my publications I often adopted the word “mechanical” as an alternative
to “automatic”.

1



number of projects and research ideas, emphasizing their relevance and contributions towards
my long term research plan. In my web page, http://www.cs.utexas.edu/users/pauldj,
I showcase results from the most significant projects that I have completed.

Research Directions

Multi-core Architectures & Performance Prediction [4,5]. Multi-core processors
have become commodity hardware; they are used in a variety of computer systems, ranging
from large computing clusters to home desktops and even laptops. Consequently, these par-
allel processors represent the engines for tackling massively parallel simulations with millions
of degrees of freedom as well as problems of modest size to be executed on a single desktop.
Hence, it is obvious that linear algebra libraries need to be tuned not only for asymptoticly
large matrices, but across the entire spectrum of problem sizes. The question is how to ex-
ploit the parallelism offered by multi-core architectures. My goal is to provide an answer for
computations that involve dense linear algebra problems and/or eigensolvers.

As part of the FLAME team, we have tackled the problem, relative to linear algebra opera-
tions, following two different paradigms: 1) parallelism is obtained through high-performance
multi-threaded BLAS; 2) parallelism comes from data blocking and careful task scheduling.
In the first case, sequential algorithms are directly translated into parallel code by linking
to multi-threaded BLAS. High-performance is a byproduct of the richness, in terms of algo-
rithms, of the family generated by my automated system or by the systematic procedure. In
the latter case, the computation is partitioned down to blocks of size for which the sequen-
tial BLAS is optimized. A graph of dependencies is created among the blocks, and clever
scheduling of the blocks is the cause of high-performance. We have gathered evidence that
for different problem sizes and under different conditions, both the approaches have merit.

The research direction that I intend to pursue is related to the capability of accurately
model and predict the performance of an algorithm or a scheduling scheme. Crucial to the
success of this project is the understanding of the performance signature of the BLAS library;
to this end, I am collaborating with Kasushige Goto, the developer of the popular GotoBLAS.
Preliminary investigation, performed with the aid of a prototype simulator that I developed,
showed predictions that closely mirror the actual algorithmic performance. I believe that
the same approach will yield highly accurate estimates even for architectures with complex
multi-level memories.

Automatic Derivation of Algorithms [6,3,7,8,10]. High performance libraries for dense
linear algebra operations are one of the fundamental building blocks in the area of scientific
computing. Even applications that yield sparse linear systems often require the manipulation
of smaller dense subproblems. As part of the Formal Linear Algebra Method Environment
(FLAME) project, conducted at The University of Texas at Austin, we set out not to build
a linear algebra library, but to build systematic and automated tools to build libraries.

The first milestone towards automation was the discovery of a systematic procedure for
generating loop-based algorithms. We realized that, from the mathematical description of a
linear algebra operation belonging to a certain class, it is possible to identify –a priori– one
or more loop invariants. These are loop invariants for loop-based algorithms that compute
the specified operation. Given that a loop invariant fully dictates the structure of a loop, we

2



were able to lay out a sequence of algebraic manipulations to transform the mathematical
description of an input operation into provably correct loop-based algorithms.

This generating procedure can be applied multiple times to the same operation, giving
rise to a family of algorithms, each of which with its own performance and accuracy signature.
The scope of applicability of the procedure includes, but is not limited to, all the Basic Linear
Algebra Subprograms (BLAS) operations, all the operation supported by RECSY, a library
for control theory, and many of the operations supported by the Linear Algebra Package
(LAPACK).

In my Ph.D. dissertation, in addition to this systematic procedure, I showcased an au-
tomated system that, given a formal description of a target linear algebra operation, with
only limited human intervention, returns algorithms and code for the operation. Thanks to
this system, a user is able to generate dozens of algorithms and routines, even for advanced
operations like the coupled (generalized) triangular Sylvester equation, in matter of minutes.
As part of a collaboration with Prof. Brian Gunter, I used the system to generate algorithms
and code for inverting a symmetric positive definite matrix, operation needed for the accurate
estimation of the gravitational Earth field; the same operation is used in tomography. We
measured a performance improvement of 20% to 30% with respect to the existing libraries,
allowing a tangible advancement in the scientific investigation.

I want to stress the role of automation in the generation of algorithms. One interpretation
is that an automated system assists the user in performing extremely complicated symbolic
manipulations in a timely manner. While this statement is correct, it is incomplete. My
system also generates results (in this case algorithms) that may have not been known in
advance. In fact, in many occurrences of our research, the system has found more algorithms
than we would have, had we tackled the problem by hand. In summary, this automated
system is a tool assisting the user in making new discoveries.

The ultimate objective of this research effort is an automated system that, instead of
returning a family of algorithms, returns the best algorithm, in terms of a given metric, for
a target architecture and target settings. As I mentioned in the former section, this is one
problem that I plan to investigate further. An orthogonal question is whether it is possible
to single out, within a family of algorithms, all the ones that are numerically stable. The
last chapter of my dissertation and [9] shows preliminary results in this direction.

Sparse Direct Solvers for Unassembled Hyper-Matrices [2]. The solution of the
linear system Ax = b, with sparse matrix A, is undoubtedly the most common operation
among scientific computations. The purpose of this project is to efficiently compute the
solution of a sequence of linear systems Aixi = bi, where the matrix Ai is tightly related to
Ai−1.

In the setting of hp-adaptive Finite Element Methods, the sequence of matrices {Ai}
results from successive local refinements of the problem domain. The process of local refine-
ments is recursive —domains are partitioned into subdomains— therefore the interactions
among domains are naturally captured by an “HyperMatrix” (a matrix whose entries are
matrices). Since the domain refinements are only local, modifications to one subdomain af-
fect only a small, and known, number of entries in the HyperMatrix. Thus, the matrices Ai

and Ai+1 are strongly correlated; also to be noted, at any step i > 1, a factorization of a
matrix Ai−1 is available for reuse.

Given this formulation of the problem, it is not the solution of one instance of the linear

3



system Ax = b that should be optimized, as traditional solvers do, but the solution of a
sequence of such systems. Standard solvers do not have a way of exploiting the factorization
available from the former iteration, nor they accept hypermatrices as input. Since they only
operate with flat matrices, any information relative to the hierarchy is lost, and graph parti-
tioning algorithms are needed in the attempt to reconstruct the information in approximate
form.

As part of a collaboration with the Texas Advanced Computing Center (TACC) and
the Institute for Computational Engineering and Sciences (ICES), we have designed a new
hierarchical data structure, the Unassembled Hyper-Matrix (UHM), and a solver, which
take advantage of both the properties of the problem and the knowledge available in the
application. In detail, we allow the matrix to be stored as a tree of unassembled element
matrices, hierarchically ordered to mirror the refinement history of the physical domain. The
factorization of an UHM assembles the nodes only when they need to be eliminated and
makes use of the previously computed factorization.

This project, that received NSF funding, is still in its infancy. My first objective is to
produce an hierarchical Cholesky solver. I believe that this will result in both space and
performance improvements with respect to traditional solvers. Extensions to non-positive
definite matrices (pivoting) and parallel architectures (multi-core) are research directions
that I intend to explore in the future.

Multidimensional Fast Fourier Transforms on the Cell Processor [1]. The Cell
Broadband Engine is a multi-core processor with low-power consumption and high com-
puting performance; it was designed targeting gaming and multimedia applications on small
electronic devices. The Cell is composed of one master processor (PPE), up to eight synergis-
tic processing elements (SPEs) and a broadband interconnect bus. Because of its impressive
theoretical peak performance (204.8 Gflops when operating in single precision floating point
arithmetic), its release generated a general interest in trying to exploit such a computational
power for other applications.

In collaboration with Prof. Nikos Pitsianis and Prof. Xiaobai Sun at Duke University,
wet set out to evaluate the potential of the Cell when employed in real-time, low-power,
high-resolution image processing systems, such as synthetic aperture radar imaging systems,
tomographic imaging, and interactive volume data rendering. Our first target was the efficient
computation of 2D FFTs on streaming data. After a first period of investigation of the
architecture, in which we studied the cost of memory accesses, data movements and arithmetic
vector operations, we designed an algorithm that would benefit from the features of the Cell.

Our algorithm for 2D FFTs consists of two phases: a coupling phase in which pair-wise
communications are interwoven with arithmetic operations, and an uncoupled phase, during
which smaller 2D FFTs are computed independently on the SPEs, leaving the communication
network free to transfer data to and from the main memory for the stream of successive FFTs.
Thanks to the joint exploitation of the architectural features specific to the Cell and the
algorithmic properties specific to the FFT, the algorithm achieves almost perfect overlap of
computation and communication; when compared with other codes, including the acclaimed
FFTW, our algorithm attains the best performance.

Having built an accurate computational model for the Cell processor, my goal has now
shifted towards the efficient computation of three and higher dimensional FFTs.

4



Selected References

[1] Paolo Bientinesi, Nikos Pitsianis, Xiaobai Sun. Parallel 2D FFTs on the Cell Broadband Engine.
Submitted to International Journal of High Performance Computing Applications.

[2] Paolo Bientinesi, Victor Eijkhout, Kyungjoo Kim, Jason Kurtz and Robert van de Geijn. Sparse
Direct Factorizations through Unassembled Hyper-Matrices. Submitted to Computer Methods
in Applied Mechanics and Engineering.

[3] Paolo Bientinesi, Brian Gunter and Robert van de Geijn. Families of Algorithms Related to
the Inversion of a Symmetric Positive Definite Matrix. Accepted for publication in ACM
Transactions on Mathematical Software.

[4] Paolo Bientinesi, Ernie Chan, Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, Robert van de
Geijn and Field Van Zee. SuperMatrix: a Multithreaded Runtime Scheduling System for Algo-
rithms-by-Blocks. ACM SIGPLAN 2008 Symposium on Principles and Practice of Parallel
Programming (PPoPP’08), February 20-23, 2008.

[5] Paolo Bientinesi, Tze Meng Low, Robert van de Geijn and Field van Zee. Scalable Paral-
lelization of FLAME Code via the Workqueuing Model. Accepted for publication in ACM
Transactions on Mathematical Software.

[6] Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra
Algorithms. The University of Texas at Austin, Department of Computer Sciences. September
2006. (Ph.D. Dissertation). Also Technical Report TR-06-46.

[7] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı and Robert
A. van de Geijn. The Science of Deriving Dense Linear Algebra Algorithms. ACM Transactions
on Mathematical Software, 31(1), March 2005.

[8] Paolo Bientinesi and Robert van de Geijn, Formal Correctness and Stability of Dense Linear Al-
gebra Algorithms., 17th IMACS World Congress: Scientific Computation, Applied Mathematics
and Simulation, 2005.

[9] Paolo Bientinesi and Robert van de Geijn. The Science of Deriving Stability Analyses. In
preparation.

[10] Paolo Bientinesi, Sergey Kolos and Robert van de Geijn, Automatic Derivation of Linear Algebra
Algorithms with Application to Control Theory. In Proceedings of PARA’04 State-of-the-Art
in Scientific Computing, June 20-23, 2004.

[11] Paolo Bientinesi, Inderjit S. Dhillon, Robert A. van de Geijn. A Parallel Eigensolver for Dense
Symmetric Matrices Based on Multiple Relatively Robust Representations. SIAM Journal on
Scientific Computing, 27(1), 43-66, 2005.

[12] Paolo Bientinesi, Enrique Quintana-Ort́ı and Robert van de Geijn. Representing Linear Algebra
Algorithms in Code: The FLAME APIs. ACM Transactions on Mathematical Software, 31(1),
March 2005.

[13] Paolo Bientinesi and Robert van de Geijn. Representing Dense Linear Algebra Algorithms: A
Farewell to Indices. FLAME Working Note #17. The University of Texas at Austin, Depart-
ment of Computer Sciences. Technical Report TR-2006-10. February 2006.

[14] Paolo Bientinesi and Xiaobai Sun. Numerical Calculation of the Prolate Functions for Energy-
concentrated Approximations of Bandlimited Functions. In preparation.

[15] Daniele Finocchiaro, Marco Pellegrini and Paolo Bientinesi. On Numerical Approximation of
Electrostatic Energy in 3D. Journal of Computational Physics 146/2, 707-725, 1998.

5


