## Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems

by

Roland Winkler

(Springer Tracts in Modern Physics Vol. 191, Springer, Berlin 2003)

Dear Readers of the Book

I apologize for the misprints that escaped my notice before releasing the manuscript to the printer. Below you find a list of errata which I am aware of today. (I did not include in the list obvious typographic errors which do not cause confusion.) I am grateful to A. E. Botha, S. Chesi, H.-A. Engel, and B. Foreman for pointing out misprints.

I would appreciate if you could inform me of any further errors you might encounter. Please send them to my e-mail address given below. The newest update of errata is available at

http://www.physics.niu.edu/~rwinkler/research/stmp.pdf http://www.nano.uni-hannover.de/~winkler/research/stmp.pdf

April 7, 2008

Roland Winkler

e-mail: rwinkler@niu.edu

**p. 22** According to Koster et al. [4] the compatibility relations between the irreducible representations of  $O_h$  and  $T_d$  read:

| $O_h$        |               | $T_d$      |
|--------------|---------------|------------|
| $\Gamma_1^+$ | $\rightarrow$ | $\Gamma_1$ |
| $\Gamma_2^-$ | $\rightarrow$ | $\Gamma_1$ |
| $\Gamma_4^-$ | $\rightarrow$ | $\Gamma_5$ |
| $\Gamma_5^+$ | $\rightarrow$ | $\Gamma_5$ |
| $\Gamma_6^-$ | $\rightarrow$ | $\Gamma_7$ |
| $\Gamma_7^+$ | $\rightarrow$ | $\Gamma_6$ |

Accordingly, Table 3.1 should read:

 Table 3.1.
 Symmetry classification of the bands in the extended Kane model

| Single group                                                                                                |                                              | Double group          |                         |                       |                       |   |            |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|-------------------------|-----------------------|-----------------------|---|------------|
| $O_h/T_d$                                                                                                   | Full rotation                                | group $\mathcal{R}$   |                         |                       | $O_h/T_d$             |   |            |
| $\left  \right  \left  \left $ | $l=1  (\mathcal{D}_1^-) \checkmark$          | j = 3/2               | $(\mathcal{D}^{3/2})$   | <b>→</b>              | $\Gamma_8^-/\Gamma_8$ |   |            |
| 14/134                                                                                                      | p antibonding $i = 1/2$                      | $(\mathcal{D}^{1/2})$ |                         | $\Gamma_6^-/\Gamma_7$ | $\square$             | / |            |
| $\Gamma_2^-/\Gamma_1$                                                                                       | $l = 0$ $(\mathcal{D}_0^-)$<br>s antibonding | j = 1/2               | $(\mathcal{D}^{1/2})$   |                       | $\Gamma_7^-/\Gamma_6$ |   |            |
| $\Gamma_5^+/\Gamma_5$ -                                                                                     | $l = 1$ $(\mathcal{D}_1^+)$                  | j = 3/2               | $(\mathcal{D}^+_{3/2})$ | <b>→</b>              | $\Gamma_8^+/\Gamma_8$ |   | $\swarrow$ |
|                                                                                                             | p bonding $\searrow j$                       | j = 1/2               | $(\mathcal{D}^+_{1/2})$ |                       | $\Gamma_7^+/\Gamma_7$ |   |            |

**p. 41** The third line below Eq. (4.10): ... the number of states per unit energy range  $\pm dE$  and ...

**p. 41** Eq. (4.11) should read:

$$D(E) = \pm \frac{1}{\mathcal{L}^2} \frac{\mathrm{d}}{\mathrm{d}E} \mathcal{N}(E) = \sum_{\alpha,\sigma} \int \frac{\mathrm{d}^2 k_{\parallel}}{(2\pi)^2} \,\delta\big[E - E_{\alpha\sigma}(\mathbf{k}_{\parallel})\big]\,. \tag{4.11}$$

**p. 41** Eq. (4.13) should read:

$$\frac{m_{\alpha\sigma}^{*}(E)}{m_{0}} = 4\pi \, \frac{\hbar^{2}}{2m_{0}} \, D_{\alpha\sigma}(E) = \frac{1}{\pi} \, \frac{\hbar^{2}}{2m_{0}} \int \mathrm{d}^{2}k_{\parallel} \, \delta\left[E - E_{\alpha\sigma}(\boldsymbol{k}_{\parallel})\right] \,. \tag{4.13}$$

p. 43 First paragraph Sec. 4.4: Citation numbers corrected

... Most publications on the calculation of Landau levels in 2D hole systems have restricted themselves to the axial approximation (see Sect. 3.6) to Luttinger's  $4 \times 4 \ \mathbf{k} \cdot \mathbf{p}$  model [7,8]. In [38], the split-off valence band  $\Gamma_7^v \ldots$  Few publications [23,37,41,42] have analyzed Landau levels beyond the axial approximation...

**p. 46** Eq. (4.31) should read (sign reversed)

$$\psi_{\alpha N\sigma}(\boldsymbol{r}) = \sum_{n} \left| L_n = N - m_n - \frac{3}{2} \right\rangle \xi_{m_n}^{\alpha N\sigma}(z) u_{n\mathbf{0}}(\boldsymbol{r}) \tag{4.31}$$

**p. 46** Eq. (4.32b) should read (sign reversed)

$$\Psi_{\alpha \mathcal{N}\sigma}(\boldsymbol{r}) = \sum_{\alpha', N, \sigma'} c_{\alpha \mathcal{N}\sigma}^{\alpha' N \sigma'} \sum_{n} \left| N - m_n - \frac{3}{2} \right\rangle \, \xi_{m_n}^{\alpha' N \sigma'}(z) u_{n\mathbf{0}}(\boldsymbol{r}) \,. \tag{4.32b}$$

**p. 54** End of second paragraph: If expressed in a basis of eigenstates of  $J_z$  all four eigenstates of  $J_x$  and  $J_y$  are a mixture of both HH and LH states.

**p. 66** Eq. (5.13) should read

$$\tilde{\psi}_c = \left[1 + \frac{P^2}{6} \left(\frac{2k^2 - (e/\hbar) \,\boldsymbol{\sigma} \cdot \boldsymbol{B}}{E_0^2} + \frac{k^2 + (e/\hbar) \,\boldsymbol{\sigma} \cdot \boldsymbol{B}}{(E_0 + \Delta_0)^2}\right)\right] \psi_c \tag{5.13}$$

**p.** 71 Footnote 2 should read: Strictly speaking, even for the diamond structure only  $T_d$  but not  $O_h$  is a subgroup of the space group. The reason is that the diamond structure has a *nonsymmorphic* space group with point group  $O_h$ , i.e. the symmetry operations in  $O_h$  must be combined with a nonprimitive translation of the translation subgroup of the diamond structure in order to map the diamond structure onto itself. Nevertheless, ...



**p. 116** A minus sign is missing in the body of Fig. 6.17 (only in the printed version of the book).



**p. 118** Two minus signs are missing in the body of Fig. 6.18 (only in the printed version of the book).

**p. 140** Eq. (7.14a) should read:

$$\mathcal{K} = \frac{\hbar^2}{2m_0} \frac{\kappa \delta}{\mathrm{i}} \sum_{\alpha} \frac{\langle h_1 | [\mathfrak{k}_z, z] | l_\alpha \rangle \langle l_\alpha | \mathfrak{k}_z^2 | h_1 \rangle}{E_1^h - E_\alpha^l} \,, \tag{7.14a}$$

p. 140 Eq. (7.15) should read (factors 2 missing):

$$g_{[nn(2m)]}^{\text{HH}} = 6 \left(2 - 3\sin^2\theta\right) \sin\theta \sqrt{4 - 3\sin^2\theta} \\ \times \sqrt{\left(\mathcal{K} - \mathcal{G}_2\right)^2 \sin^2\theta + \left(\mathcal{K} - \mathcal{G}_3\right)^2 \cos^2\theta}, \qquad (7.15a)$$

$$g_{[\bar{1}10]}^{\rm HH} = -6 \left(2 - 3\sin^2\theta\right) \sin^2\theta \left|\mathcal{K} - \mathcal{G}_3\right|.$$
 (7.15b)

## **p. 142** First paragraph:

The values  $u_1 = u_2 = 1/2$  correspond to a parabolic QW. For the rectangular QW we have  $u_1 = 1$  and  $u_2 = 0, \ldots$ 

**p. 146** Eq. (7.19a) should read (several signs reversed):

$$\mathcal{H}_{[001]}^{\rm HH} = -\frac{3}{2}q\mu_{\rm B} \left(B_x\sigma_x - B_y\sigma_y\right) + \mathcal{Z}_{[001]}^{\rm HH} \mu_{\rm B}^3 \left\{\gamma_2 \left[ (B_x^3 - B_x B_y^2)\sigma_x - (B_y^3 - B_y B_x^2)\sigma_y \right] - 2\gamma_3 \left[ B_x B_y^2 \sigma_x - B_y B_x^2 \sigma_y \right] \right\},$$
(7.19a)

## **p. 146** Eq. (7.19b) should read:

$$\begin{aligned} \mathcal{Z}_{[001]}^{\rm HH} &= \frac{6im_0}{\hbar^2} \bigg( \kappa \sum_{\alpha} \frac{\langle h_1 | z^2 | l_{\alpha} \rangle \langle l_{\alpha} | [\mathfrak{k}_z, z] | h_1 \rangle + \langle h_1 | [\mathfrak{k}_z, z] | l_{\alpha} \rangle \langle l_{\alpha} | z^2 | h_1 \rangle}{E_1^h - E_{\alpha}^l} \\ &+ 2\gamma_3 \sum_{\alpha} \frac{\langle h_1 | z^2 | l_{\alpha} \rangle \langle l_{\alpha} | \{\mathfrak{k}_z, z\} | h_1 \rangle - \langle h_1 | \{\mathfrak{k}_z, z\} | l_{\alpha} \rangle \langle l_{\alpha} | z^2 | h_1 \rangle}{E_1^h - E_{\alpha}^l} \bigg). \end{aligned}$$

$$(7.19b)$$

p. 147 Eq. (7.20) should read (several signs reversed):

$$\mathcal{Z}_{[001]}^{\text{HH}} = \left(\frac{w^2 m_0}{\pi^2 \hbar^2}\right)^2 \left[\frac{\kappa}{2\gamma_2} \left(\pi^2 - 6\right) - \frac{27\gamma_3}{16\gamma_1 + 40\gamma_2}\right].$$
(7.20)

**p. 147** Eq. (7.22) should read ( $\mu_{\rm B}$ 's added)

$$\mathcal{H}_{[001]}^{\rm HH} = z_{51}^{7h7h} \mu_{\rm B} \left( B_x k_x^2 \sigma_x - B_y k_y^2 \sigma_y \right) + z_{52}^{7h7h} \mu_{\rm B} \left( B_x k_y^2 \sigma_x - B_y k_x^2 \sigma_y \right) + z_{53}^{7h7h} \mu_{\rm B} \left\{ k_x, k_y \right\} \left( B_y \sigma_x - B_x \sigma_y \right) , \qquad (7.22)$$

**p. 147** Eq. (7.23) should read

$$z_{51}^{7h7h} = -\frac{3}{2}\kappa\gamma_2 Z_1 + 6\gamma_3^2 Z_2 , \qquad (7.23a)$$

$$z_{52}^{7h7h} = \frac{3}{2}\kappa\gamma_2\mathcal{Z}_1 - 6\gamma_2\gamma_3\mathcal{Z}_2 , \qquad (7.23b)$$

$$z_{53}^{7h7h} = 3\kappa\gamma_3 \mathcal{Z}_1 - 6\gamma_3 \left(\gamma_2 + \gamma_3\right) \mathcal{Z}_2 , \qquad (7.23c)$$

**p. 147** Eq. (7.24) should read

$$\mathcal{Z}_{1} = i \frac{\hbar^{2}}{m_{0}} \frac{\langle h_{1} | [k_{z}, z] | l_{1} \rangle \langle l_{1} | h_{1} \rangle + \langle h_{1} | l_{1} \rangle \langle l_{1} | [k_{z}, z] | h_{1} \rangle}{E_{1}^{h} - E_{1}^{l}} , \qquad (7.24a)$$

$$\mathcal{Z}_2 = i \frac{\hbar^2}{m_0} \sum_{\alpha} \frac{\langle h_1 | k_z | l_\alpha \rangle \langle l_\alpha | z | h_1 \rangle - \langle h_1 | z | l_\alpha \rangle \langle l_\alpha | k_z | h_1 \rangle}{E_1^h - E_\alpha^l} .$$
(7.24b)

## **p. 147** Eq. (7.25) should read

$$\mathcal{Z}_1 = \frac{w^2}{\pi^2 \gamma_2} , \qquad (7.25a)$$

$$\mathcal{Z}_2 = \frac{512w^2}{27\pi^4 \left(3\gamma_1 + 10\gamma_2\right)}.$$
(7.25b)

**p. 167** Two minus signs are missing in the body of Fig. 8.12 (only in the printed version of the book).



**p. 187** Eq. (9.14b) and Eq. (9.14c) should read:  

$$\mathcal{H}_{-}^{b} = \frac{i}{8} \left[ c \left( 3c^{2} - 1 \right) \left( k_{-}^{3} + \{k_{+}, k_{-}, k_{+}\} - 4k_{+}k_{z}^{2} \right) + 6cs^{2} \left( \{k_{-}, k_{+}, k_{-}\} - 4k_{-}k_{z}^{2} \right) \right], \qquad (9.14b)$$

$$\mathcal{H}_{z}^{b} = \frac{i}{16} \left[ 3s \left( c^{2} + 1 \right) \left( k_{-}^{3} - k_{+}^{3} \right) \right]$$

$$t_{z} = \frac{1}{16} [3s(c^{2} + 1)(k_{-} - k_{+})] + s(3c^{2} - 1)(\{k_{-}, k_{+}, k_{-}\} - \{k_{+}, k_{-}, k_{+}\}) + 4s(3c^{2} - 1)(k_{+} - k_{-})k_{z}^{2}], \qquad (9.14c)$$

**p. 202** A minus sign is missing in the body of Fig. B.1 (only in the printed version of the book).



**p. 209** In Table C.2,  $T_{yz}$  should read

$$T_{yz} = \frac{i}{2\sqrt{6}} \begin{pmatrix} -1 & 0 & -\sqrt{3} & 0\\ 0 & \sqrt{3} & 0 & 1 \end{pmatrix}$$

**p. 210** Table C.3(c) should read (see above the corrected Table 3.1.):

| $\Gamma_8^{c-}\left(\Gamma_8^c\right)$ | $\Gamma_6^{c-}\left(\Gamma_7^c\right)$ | $\Gamma_7^{c-}\left(\Gamma_6^c\right)$ | $\Gamma_8^{v+}(\Gamma_8^v)$ | $\Gamma_7^{v+}\left(\Gamma_7^v\right)$ |                                          |
|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------|----------------------------------------|------------------------------------------|
| +                                      | +                                      | +                                      | _                           | _                                      | $\Gamma_8^{c-}\left(\Gamma_8^c\right)$   |
|                                        | +                                      | +                                      | _                           | _                                      | $\Gamma_6^{c-}\left(\Gamma_7^c\right)$   |
|                                        |                                        | +                                      | _                           | —                                      | $\Gamma_7^{c-}\left(\Gamma_6^c\right)$   |
|                                        |                                        |                                        | +                           | +                                      | $\varGamma_8^{v+}(\varGamma_8^v)$        |
|                                        |                                        |                                        |                             | +                                      | $\Gamma_7^{v+}\left(\Gamma_7^{v}\right)$ |