+**********************************************************************
*
*
* Einladung
*
*
*
* Informatik-Oberseminar
*
*
*
+**********************************************************************
Zeit: Montag, 19. Juli 2021, 14.30 Uhr
Zoom: https://rwth.zoom.us/j/99446295120?pwd=NWU0QmIvVkpONlV2R0xmbmloTkhZZz09
Referent: Dipl.-Ing. Evgeny Kusmenko
Lehrstuhl Informatik 3
Thema: Model-Driven Development Methodology and Domain-Specific Languages for the Design of Artificial Intelligence in Cyber-Physical Systems
Abstract:
The development of cyber-physical systems poses a multitude of challenges requiring experts from different fields. Such systems cannot be developed successfully without the support of appropriate processes, languages,
and tools. Model-driven software engineering is an important approach which helps development teams to cope with the increasing complexity of today's cyber-physical systems. In this talk we are going to discuss a model-driven engineering methodology with a
particular focus on interconnected intelligent cyber-physical systems such as cooperative vehicles.
The basis of the proposed methodology is a component-and-connector architecture description language focusing on the decomposition and integration of cyber-physical system software. It features a strong, math-oriented
type system abstracting away from
the technical realization and incorporating physical units. To facilitate the development of highly-interconnected self-adaptive systems, the language enables its users to model component and connector arrays and supports
architectural runtime-reconfiguration. Architectural elements can be altered, added, and removed dynamically upon the occurrence of trigger events.
In order to fully cover the development process, the proposed methodology, in addition to structural modeling, provides means for behavior specification and its seamless integration into the components of the architecture.
A matrix-oriented scripting language enables
the developer to specify algorithms using a syntax close to the mathematical domain. What is more, a dedicated deep learning modeling language is provided for the development and training of neural networks as directed
acyclic graphs of neuron layers. The framework supports different learning methods including supervised, reinforcement, and generative adversarial learning, covering a broad range of applications from image and natural
language processing to decision making and test data generation.
The presented toolchain enables an automated generation of fully functional C++ code together with the corresponding build and training scripts based on the architectural models and behavior specifications. Finally, to
facilitate the integration and deployment of the modeled software in distributed environments, we use a tagging approach to model the middleware and to control a middleware generation toolchain.
Es laden ein: die Dozentinnen und Dozenten der Informatik