LearnAut 2019 first Call for Papers -- LICS 2019 Workshop
Learning and Automata (LearnAut) -- LICS 2019 workshop June 23rd, Vancouver, Canada Website: https://learnaut19.github.io SUBMISSION DEADLINE March 30th Learning models defining recursive computations, like automata and formal grammars, are the core of the field called Grammatical Inference (GI). The expressive power of these models and the complexity of the associated computational problems are major research topics within mathematical logic and computer science, spanning the communities that the Logic in Computer Science (LICS) conference brings together. Historically, there has been little interaction between the GI and LICS communities, though recently some important results started to bridge the gap between both worlds, including applications of learning to formal verification and model checking, and (co-)algebraic formulations of automata and grammar learning algorithms. The goal of this workshop is to bring together experts on logic who could benefit from grammatical inference tools, and researchers in grammatical inference who could find in logic and verification new fruitful applications for their methods. We invite submissions of recent work, including preliminary research, related to the theme of the workshop. Similarly to how main machine learning conferences and workshops are organized, all accepted abstracts will be part of a poster session held during the workshop. Additionally, the Program Committee will select a subset of the abstracts for oral presentation. At least one author of each accepted abstract is expected to represent it at the workshop. Topics of interest include (but are not limited to): - Computational complexity of learning problems involving automata and formal languages. - Algorithms and frameworks for learning models representing language classes inside and outside the Chomsky hierarchy, including tree and graph grammars. - Learning problems involving models with additional structure, including numeric weights, inputs/outputs such as transducers, register automata, timed automata, Markov reward and decision processes, and semi-hidden Markov models. - Logical and relational aspects of learning and grammatical inference. - Theoretical studies of learnable classes of languages/representations. - Relations between automata and recurrent neural networks. - Active learning of finite state machines and formal languages. - Methods for estimating probability distributions over strings, trees, graphs, or any data used as input for symbolic models. - Applications of learning to formal verification and (statistical) model checking. - Metrics and other error measures between automata or formal languages. ** Invited speakers ** Lise Getoor (UC Santa Cruz) Prakash Panangaden (McGill University) Nils Jansen (Radboud University) (to be confirmed) ** Submission instructions ** Submissions in the form of extended abstracts must be at most 8 single-column pages long at most (plus at most four for bibliography and possible appendixes) and must be submitted in the JMLR/PMLR format. The LaTeX style file is available here: https://ctan.org/tex-archive/macros/latex/contrib/jmlr We do accept submissions of work recently published or currently under review. - Submission url: https://easychair.org/conferences/?conf=learnaut2019 - Submission deadline: March 30th - Notification of acceptance: April 25th - Registration: TBD ** Program Committee ** Dana Angluin (Yale University) Borja Balle (Amazon Research Cambridge) Leonor Becerra-Bonache (Université de Saint-Etienne) François Denis (Aix-Marseille Université) Colin de la Higuera (Nantes University) Falk Howar (TU Clausthal) Ariadna Quattoni (Naver Labs Europe) Alexandra Silva (University College of London) Makoto Kanazawa (Hosei University) Matthias Gallé (Naver Labs Europe) Frits Vaandrager (Radboud University) Alexander Clark (King’s College London) Kousha Etessami (University of Edinburgh) ** Organizers ** Remi Eyraud (Aix-Marseille Université) Tobias Kappé (University College London) Guillaume Rabusseau (Université de Montréal / Mila) Matteo Sammartino (University College London)
participants (1)
-
Matteo Sammartino