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Experimental and theoretical aspects of obtaining the magnetic information carried by laser beams
diffracted from an array of micro- or nanosized magnetic objects are reviewed. We report on the
fundamentals of vector magneto-optic Kerr effect �MOKE�, Bragg-MOKE, and second-order effects
in the Kerr signal in longitudinal Kerr geometry as well as on an experimental setup used for vector
and Bragg-MOKE experiments. The vector and Bragg-MOKE technique in combination with
micromagnetic simulation is a reliable tool for measuring the complete magnetization vector and for
characterizing the reversal mechanism of lateral magnetic nanostructures. We discuss the
Bragg-MOKE effect for three standard domain configurations during the magnetization reversal
process and present the expected behavior of the magnetic hysteresis loops. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2821148�

I. INTRODUCTION

Lateral magnetic nanostructures are of immense scien-
tific and technological interest, since they are used in device
applications such as magnetoresistive sensors and high-
density and nonvolatile random access memory.1 There is
much interest in the understanding, modeling, and control-
ling the magnetization reversal of magnetic micro- and nano-
structures as a function of shape �stripes, squares, circular
dots, elliptic dots, etc.�, aspect ratio, and interparticle sepa-
ration. A review about fabrication and properties of ordered
magnetic nanostructures has been provided in Ref. 2. It is
well known that in small magnetic structures the shape an-
isotropy dominates the switching behavior and the switching
rate. Therefore the shape and the size of magnetic structures
have a strong influence on the switching characteristics.3–5

In addition, in an array of magnetic elements, interaction
and correlation effects between adjacent magnetic structures
need to be considered. For the analysis of lateral magnetic
nanostructures a number of experimental tools are available:
superconducting quantum interference device �SQUID� mag-
netometry, Hall bars,6 Lorentz microscopy,7 x-ray photoelec-
tron emission microscopy �PEEM�,8 magnetic transmission
x-ray microscopy �MTXM�,9 magnetic force microscopy,10

Kerr microscopy,11 polarized neutron reflectivity �PNR�,12

micro-magneto-optical Kerr effect �MOKE�,13 and MOKE in
the diffraction mode �d-MOKE or Bragg-MOKE�.14,15 These
methods can be distinguished according to whether they
probe magnetic nanostructures locally by imaging techniques
�Lorentz microscopy, PEEM, MTXM, Kerr microscopy� or
globally by magnetic hysteresis measurements averaging
over all elements �SQUID, Hall bars, Bragg-MOKE, PNR�.

Particular attention has recently been given to MOKE as

a tool to investigate periodic arrays of micron and submicron
elements because MOKE is more sensitive to a diminishing
amount of magnetic material than SQUID is. If MOKE is
operated in the diffraction mode and combined with vector
MOKE, information on the magnetization distribution inside
of magnetic nanostructures is gained in a vectorial form from
remanence to saturation. Furthermore, combining vector-
Bragg-MOKE with micromagnetic simulations provides con-
fidence in the proper interpretation of the reversal process.
The only limitation is the basic underlying assumption that
the magnetization reversal of each nanostructured element is
independent and the same and that correlations can be ne-
glected among the elements. If this assumption is not justi-
fied, PNR is required for the analysis of fluctuations about
the mean magnetization and correlation effects between the
different elements.

In this contribution we discuss the vector MOKE
�Ref. 16� and the Bragg-MOKE �Ref. 17� technique in the
longitudinal geometry, which is highly sensitive to any kind
of reversal mechanism. In other studies15,18 we have shown
that the combination of MOKE measurements with micro-
magnetic simulations for the analysis of the magnetization
reversal is a powerful tool for the understanding of the mag-
netization reversal of lateral magnetic nanostructures. Here
we provide a theoretical analysis of the method and discuss
the results from simulations of the Bragg-MOKE effect in
three standard domain configurations during the reversal pro-
cess: vortex transition, formation of edge domains, and co-
herent rotation of the magnetization vector. The aim is to
show that Bragg-MOKE is sensitive to these different rever-
sal mechanisms and to provide guidelines for future experi-
mental studies.

The Bragg-MOKE technique is well established in trans-
verse Kerr geometry. In this paper we will show that the
advantage of MOKE in the longitudinal Kerr geometry is
the possibility to combine vector MOKE with Bragg-MOKE.
To overcome the difficulties caused by additional magneto-
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optical second-order effects of the longitudinal Kerr effect
we will discuss a method to separate such nonlinear effects.

This paper is organized as follows: in Sec. II we provide
a short overview on the magneto-optical Kerr effect and the
experimental setup used for longitudinal MOKE. In Sec. III
we discuss the vector MOKE configuration together with
different experimental realizations. Section IV deals with
Bragg MOKE. Here we first give a short overview on pub-
lished theoretical and experimental work on the Bragg-
MOKE technique, followed by a short description of the
experimental setup and a theoretical treatment of the effect.
In Sec. V the vector and the Bragg-MOKE signal for some
standard nanostructured magnetic arrays are simulated: is-
lands with vortices, stripes with edge domains, and squares
with coherent rotation. In Sec. VI second-order magneto-
optical effects are discussed. Finally in Sec. VII the theoret-
ical and simulation results are summarized and the advan-
tages of the combination of Bragg and vector MOKE for the
analysis of lateral magnetic patterns are discussed.

II. MAGNETO-OPTICAL KERR EFFECT
AND EXPERIMENTAL SETUP

When a beam of light is incident from a nonmagnetic
medium to a magnetic medium with an arbitrary direction of
the magnetization, the dielectric tensor � can be generalized
in the first order as follows:19

� = �xx� 1 − ıQmz ıQmy

ıQmz 1 − ıQmx

− ıQmy ıQmx 1
� . �1�

All physical quantities are treated as complex numbers. For
simplicity, we assume �zz=�xx. The magneto-optical constant
Q is defined as

Q = ı
�xy

�xx
. �2�

In Eq. �1�, mx, my, and mz are the direction cosines of the
magnetization vector M. Solving Maxwell equations for the
above dielectric tensor, the reflected and incident amplitudes
E� and E are related through the Fresnel reflection matrix as

�Es�

Ep�
� = �rss rps

rsp rpp
��Es

Ep
� , �3�

where rij is the ratio of the incident i polarized electric field
and the reflected j polarized electric field �p stands for p
polarization and s for s polarization�. MOKE arises because
of nonvanishing off-diagonal reflectivity components rps and
rsp. In our case for longitudinal Kerr geometry and an inci-
dent s-polarized light beam, the Kerr rotation is expressed by
the following reflection coefficients:

�K = R�−
rps

rss
� , �4�

with the general reflection coefficients

rss =
n1 cos � − n2 cos ��

n1 cos � + n2 cos ��
�5�

and

rps =
ın1n2 cos ��mx sin �� − mz cos ���Q

�n2 cos � + n1 cos ����n1 cos � + n2 cos ���cos ��
.

�6�

In the above expressions �, n1, and n2 are the angle of inci-
dence, the refractive index of the nonmagnetic medium, and
that of the magnetic medium, respectively. The complex re-
fraction angle �� in the magnetic medium is determined by
Snell’s law, as indicated in Fig. 1. The refracted amplitudes
E+� and E−� are generally circularly polarized. In longitudinal
Kerr geometry, mx=1 and my =mz=0. Using Snell’s law and
simplifying the terms, the Kerr rotation in Eq. �4� can be
expressed by19

�K = R�−
cos � tan ��

cos�� − ���
ın1n2Q

�n2
2 − n1

2�
� . �7�

In Fig. 2 a sketch of a typical setup for longitudinal
MOKE measurements is reproduced.20 A HeNe laser �wave-
length �=632.8 nm� shines linear polarized light onto the
sample under the incident angle �. A Glan-Thompson polar-
izer ensures the s polarization of the incident light beam, i.e.,
the light is linear polarized in the direction perpendicular to
the plane of incidence spanned by the incoming wave vector
� and the specular reflected wave vector ��. The sample is
mounted with its surface parallel to the field in the center of
the pole pieces of the electromagnet on a rotatable sample
holder. The sample rotation is controlled by a stepping mo-
tor. The electromagnet is a quadrupole magnet. Each pair of
the pole pieces can be used independently to generate a mag-
netic field. The fields of the two pairs intersect perpendicu-
larly at the sample position and reach a maximum magnetic

FIG. 1. The coordinate system of the nonmagnetic medium and the mag-
netic medium with refractive indices n1 and n2, respectively. The direction
of the magnetization of the magnetic medium is arbitrary.

FIG. 2. Schematic of the magneto-optic setup.
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field of H	3000 Oe. This configuration allows us to set the
external magnetic field to any direction parallel to the sample
surface without changing the scattering geometry �laser,
sample, and detector remain fixed�. The magnetic field of
each pair of pole pieces is detected by conventional Hall
probes. The magnet is mounted together with the sample
holder onto a two circle goniometer in the Bragg-Bretano
geometry with a fixed detector. The incident angle can be
changed from �i=0° to 60°. At the sample the light beam is
reflected under an angle �� into the detector unit. In the
detector the light passes two Faraday cells called rotator and
modulator, an analyzer and finally hits a photodiode. The
analyzer, also a Glan-Thompson prism, is crossed with re-
spect to the polarizer. The Faraday cell consists of a glass rod
�Schott-Glas, SF 57, diameter �=7.5 mm, length l=80 mm�
surrounded by a coil which produces an axial field in the rod
leading to a rotation of the polarization plane according to
Verdet’s law:

�F = VlHax, �8�

where �F is the rotation angle, Hax the axial magnetic field,
and V the Verdet constant. One of the two Faraday cells,
the modulator, is operated with an ac at a frequency of ap-
proximately �=960 Hz. Thus, the main polarization plane of
the light oscillates with this frequency, which is necessary for
the lock-in technique. The other Faraday cell is operated with
a dc.

As mentioned before we use a crossed polarizer-analyzer
geometry in combination with a Faraday compensator. By
means of a lock-in technique, the crossed polarizer-analyzer
geometry was achieved at vanishing � component of the Kerr
signal leaving only the 2� signal caused by the ac itself. The
theoretical calculation of the intensity measured by the pho-
todiode is performed using the Jones matrix formalism21 and
leads to the following expression for the intensity function
�the compensation induced by the Faraday compensator is
assumed to be zero�:22

I =

rss
2

2
�1 +


rps
2


rss
2
− �1 −


rps
2


rss
2
�cos 2� − 2�K sin 2�� ,

�9�

where 
rss
 and 
rps
 are the moduli of the corresponding re-
flection coefficients, and �=�0 sin�2��t� is the oscillation
of the polarization plane caused by the Faraday modulator.
Thus, the detected intensity is proportional to the Kerr
rotation angle �K. The intensity function in Eq. �9� is
plotted in Fig. 3�a�. Two frequency components are detec-
ted: the double fundamental frequency of the modulation,
2�=1920 Hz, and a smaller component corresponding to the
fundamental frequency v=960 Hz. For zero Kerr rotation the
fundamental frequency will vanish completely. Panels �b�
and �c� of Fig. 3 show the power spectrum and the phase of
the Fourier transform of the intensity function in �a�, calcu-
lated using the fast Fourier transformation �FFT� method. In
panel �b� two peaks corresponding to the fundamental and
the double frequency are visible. The phase information de-
picted in �c� is important for detecting the sign of the Kerr
rotation. This kind of signal is obtained with the phase sen-
sitive lock-in amplifier.

Since in our setup we do not use a stabilized laser, we
perform the measurement of the Kerr angle �K by the com-
pensation method. The Faraday compensator rotates the po-
larization plane by an angle �F in such a way that �F=−�K.
By measuring the dc of the Faraday compensator, we obtain
the Kerr angle �K.

III. VECTOR MOKE

In a standard longitudinal MOKE experiment only one
component of the in-plane magnetization vector is measured.
For the interpretation of the remagnetization process it is
advantageous also to measure the orthogonal vector compo-
nent in order to reconstruct the whole magnetization vector
in the sample plane. Using the longitudinal MOKE, a vector
magnetometer has been built in the following way.22,23

A regular longitudinal MOKE measurement is per-
formed recording the x component of the magnetization vec-
tor mx, i.e., the applied magnetic field lies in the plane of
incidence and is orientated parallel to the sample surface.
The measured Kerr angle �x is proportional to the component
of the magnetization vector M projected into the field direc-
tion, �x	mx. To determine the complete magnetization vec-
tor, a MOKE measurement is performed with the sample and
external magnetic field rotated by 90°, such that the angle 

between orientation of the sample and field is kept constant,
but the magnetization component my is in the plane of inci-
dence. In this configuration, where the applied field is in
transverse geometry, the Kerr rotation of the longitudinal
MOKE detects the magnetization component parallel to
the plane of incidence but perpendicular to the applied field,
�y 	my �Ref. 23� �see Fig. 4�. Both components of the mag-
netization vector M, mx and my, yield the vector sum of the
average magnetization vector 
M�, as measured within the
region illuminated by the laser spot. The illuminated area is
approximately 1 mm2. With � as the angle between the mag-
netization vector and external applied field, the magnetiza-
tion vector can be written as

M = �mx

my
� = 
M
�cos �

sin �
� . �10�

Note in Fig. 4 the distinction between the angle � and the
sample angle 
, which defines the orientation of the sample
with respect to the applied field. Assuming that the propor-
tionality constant between �K and the components of M is

FIG. 3. �a� The intensity function �Eq. �9�� for �=960 Hz, �0=2°, �F=0°,
and �K=−0.25°. �b� The power spectrum of the signal calculated with FFT,
and �c� the phase of the FFT.
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the same for both configurations, one derives

mx

my
=

cos �

sin �
=

�x

�y
, �11�

from which follows the angle of rotation � of the magneti-
zation vector M,

� = arctan
�y

�x
. �12�

Furthermore, we can express M = 
M
 normalized to the satu-
ration magnetization Msat,

M

Msat
=�� �x

�sat
�2

+ � �y

�sat
�2

. �13�

The distinction between the orientation of the applied
field and the component of the magnetization being observed
is of key importance for the so-called vector MOKE tech-
nique. Both in-plane components of the magnetization vector
are measured via the Kerr rotation. Otherwise, using normal
longitudinal MOKE for the x component mx and transverse
MOKE for the y component my, both components cannot be
combined to the whole magnetization vector because of the
unknown proportionality between magnetization and Kerr
rotation or intensity change, respectively. Assuming linearity,
the y component my measured in transverse geometry could
not be normalized by the saturation field because in the ideal
case the sample is fully saturated in the x direction. Thus the
magnetization component mx is 100% and my is 0.

To avoid the appearance of both longitudinal and trans-
verse magnetizations in the Kerr signal due to a small mis-
alignment of the polarizer �i.e., not fully s-polarized light�
which will complicate the interpretation of the vector MOKE
data, the polarizer is carefully aligned until the differences in
the hysteresis loop of the y component measured at the

specular spot reach nearly zero when the full magnetic field
is applied.24 This polarizer position is also adopted for the
measurement of the x component.

As already mentioned, other methods for determining
the magnetic vector information from MOKE measurements
are described in literature. Ohldag et al.24 extract the vecto-
rial information from longitudinal MOKE measurements by
rotating the polarization of the incident light between the
measurements, while the orientation of the sample and the
applied field remains unchanged. The disadvantage of this
method is the lack of quantitative information on the trans-
verse component. Vavassori25 presents a method for vector
magnetometry using a photoelastic modulation technique to
obtain mx, my, and mz. For the component my all the optics
except the sample are rotated by 45° from the plane of
incidence.26 Florczak and Dahlberg27 detect the x component
of the magnetization vector in the longitudinal geometry and
the y component in the transverse geometry. They measured
both the intensity shift of the reflected light and the polariza-
tion rotation in order to extract both components. An advan-
tage of this method is that sample and magnetic field are kept
in fixed positions and the two components can be measured
simultaneously. But the two signals are not directly compa-
rable as concerns their magnitude because of the different
measured physical quantities.

IV. BRAGG MOKE

A. Literature overview

Bragg-MOKE or diffraction MOKE is a technique where
the usual Kerr effect measurements are performed at the dif-
fraction spots from a lateral structure, i.e., the ferromagnetic
sample works as a diffraction grating. The first combination
of Kerr hysteresis measurements and diffraction from a
ferromagnetic grating structure was mentioned by Geoffroy
et al..28 First measurements of MOKE by diffraction were
performed by Kranz and Schrödter.29 They used a homoge-
neous Fe–Ni thin film and modulated the magnetization dis-
tribution in the film, which worked like a diffraction grating.
They showed that the first and higher orders of the diffracted
light are produced by MOKE whereas the zero order repre-
sents the reflectivity of the surface. Experimentally, they de-
termined Kerr intensities versus wavelength, polarization as
well as angle of incidence and compared them to those mea-
sured by ellipsometric methods. Geoffroy et al. measured the
transverse Kerr effect at the diffraction spots from an array
of micrometer-scale squares of amorphous Sm0.2Co0.8. They
found that the hysteresis loop measured at the specular re-
flected spot �l=0� was not reproduced in the hysteresis loops
obtained from the diffraction spots �l�0�. The signal in the
so-called diffraction hysteresis loops for l�0 was not simply
proportional to the magnetization like in the specular case
and very different results were obtained for different diffrac-
tion order l. In order to explain their results Geoffroy et al.
offered a simple calculation using scalar diffraction theory
where two main contributions have to be taken into account.
First, the measured intensity involves a geometrical phase
shift due to the thickness of the metal film. Second, and that
is the important part, the coherent Bragg diffraction spots

FIG. 4. Definition of the sample rotation 
 and the angle � of the magne-
tization vector M for the case of the longitudinal MOKE geometry measur-
ing the component mx �top panel�. In order to measure the component my,
the external magnetic field and the sample are rotated by 90°, such that
the angle 
 between the structure and the applied field is kept constant, but
the magnetization component my is in the scattering plane �bottom panel�
�Ref. 22�.
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carry information on the mean magnetization distribution in
the ferromagnetic squares. The intensity change with field
for the diffraction spot l is simply related to the variation
with the magnetization of the Fourier component of the spa-
tial magnetization distribution within the ferromagnetic
squares.

The review article by Grimsditch and Vavassori about
Bragg-MOKE in Ref. 14 gives a concise overview on the
information in the Kerr signal at the diffraction spots in
transverse Kerr geometry. The magneto-optical contribution
to the lth order diffracted beam is proportional to the mag-
netic form factor f l

m defined by

f l
m = �

S

m�r�exp�ılG · r�dS , �14�

where G is the reciprocal lattice vector, m�r� is the compo-
nent of the magnetization under investigation, and the inte-
gral is carried out over a unit cell of the structure. The mea-
sured Kerr signal can be written in the form

I 	 R�f l
m� + AlI�f l

m� . �15�

In this study Al has been treated as an adjustable parameter.
Unlike the vector MOKE results, the Bragg-MOKE data
have no straightforward and easy interpretation. Similar to
optical and x-ray diffraction, the lth order diffraction spot
represents the lth Fourier component of the magnetic density
distribution m�r� in the sample. We have recently extended
the Bragg-MOKE method such that vector MOKE can be
combined with Bragg-MOKE which allows us to determine
the complete magnetization vector data at the lth diffraction
spot.17 This has the advantage that only the periodic part of
the MOKE signal is filtered out from all other effects which
may contribute to the total MOKE signal.

In the above expression no information on the amplitude
of the magnetic signal is provided, only the intensity change
is described. Van Labeke et al.30 modeled the amplitude of
the magnetic signal as a function of the incidence angle us-
ing a perturbation approximation to the Rayleigh method.
The theoretical results using the optical constants of the flat
surface were in good agreement with their measurements
from a diffraction grating obtained in transverse Kerr geom-
etry. Their model also explains the nonexistence of a hyster-
esis loop for the diffracted order corresponding to a Littrow
angle of incidence.31 An advanced approach for the descrip-
tion of Bragg-MOKE in transverse Kerr geometry is given
by Bengoechea et al.32 In their calculations the lateral mag-
netic structure is described by fluctuations in the dielectric
tensor. The latter approach can also be used to describe the
longitudinal Bragg-MOKE.

A number of experimental and theoretical publications
followed after the seminal report by Geoffroy et al.28 In the
following some of these studies are briefly discussed.

• Bardou et al.33 studied the interplay between diffraction
and magneto-optics by measuring the Kerr rotation from
Co dots �diameter of 1–2 �m� in polar Kerr geometry.
The Kerr rotation shows strong variations versus the dif-
fraction order, the light polarization direction, and the ratio
of the film to background reflectance.

• Souche et al.34 performed Bragg-MOKE in transverse Kerr
geometry on a commercial ferromagnetic grating present-
ing systematic measurements of the change in reflectivity
between oppositely saturated magnetic states, and for vari-
ous diffracted beams by varying the angle of incidence.

• Eremenko et al.35 observed that under experimental condi-
tions the magnitude of the transverse Kerr effect measured
in diffracted beams on an array of Fe3Si stripes �width of
0.5 �m, period of 3.5 �m� is much greater than the maxi-
mum value for a sample with a flat surface. They assumed
that the enhancement of the TMOKE by an array of mag-
netic stripes is due to the cancellation between the light
interacting with the surface of the magnetic stripes and the
light interacting with the nonmagnetic substrate.

• Gadetsky et al.36 measured Kerr loops in the diffracted
beams on deep grooved glass substrates with amorphous
TbFeCo �groove depth of 50–400 nm, period of 1 �m�
showing constructive and destructive interferences of the
beams reflected from grooves and lands as a function of
the effective phase depths and relative widths of grooves
and lands.

• Vavassori25 investigated the magnetic properties of a dot
array that contains two nonidentical dots per unit cell
�thickness of 40 nm, ellipses with 0.4 and 0.7 �m axes,
circular dots of 0.4 �m in diameter�. This structure pro-
duces a diffraction pattern consisting of intense and weak
spots that results from in- and out-of-phase contributions
of the two sublattices. A comparison of the magneto-
optical Kerr measurements on the weak and strong diffrac-
tion spots enables the switching of the two sublattices to be
determined independently. In a further study37 they inves-
tigated the magnetic properties of an array of holes in an
Fe film �thickness of 40 nm, diameter of 200 nm, period of
2 �m�. They developed a theory of diffraction from an
array to include magneto-optic effects. The theory allows
us to interpret the differences in the magnetic loops ob-
served on the reflected beam and those observed on dif-
fracted spots. The latter contain more detailed information
on the magnetic structure in the vicinity of the holes and
allow to infer differences in the switching mechanism for
fields applied along the easy and hard axes.

• Guedes et al.38 studied the reversal mechanism for the
magnetization in an Fe film with an array of elliptical holes
as a function of temperature and the angle between the
applied magnetic field and an ellipse axis. Transverse and
longitudinal magnetization components and minor magne-
tization loops are explored in order to understand the re-
versal process. The experimental results are interpreted us-
ing micromagnetic simulations. The simulations account
for the strong angular dependence of the hysteresis loops
and provide a detailed picture of how the local magnetiza-
tion evolves during reversal.

• For the Bragg-MOKE technique it is not necessary to have
a structurally patterned sample. Also a homogeneous film
with a regular magnetic pattern sample will show diffrac-
tion spots where hysteresis loops can be measured. Costa-
Krämer et al.39 report on magneto-optic diffraction by a
periodic domain structure generated in a flat ferromagnetic
metal by coupling it magnetically to an array of magnetic
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elements. Both exchange and magnetostatic coupling are
effective, creating a modulation of the magnetization. Mi-
cromagnetic simulations agree qualitatively with their ex-
perimental results.

• In Ref. 40 Suzuki et al. present a theory for the magneto-
optical effect in an array of magnetic dots for normal inci-
dence, in the limit of large lattice spacings and negligible
edge effects. Their calculations predict �i� that in the dif-
fraction order of polar angle �, the ratio of the complex
Kerr rotations for s and p incident polarizations is equal to
cos2 � and �ii� that the relative area occupied by the mag-
netic dots can induce a resonance of the Kerr rotation at
specular reflection.

• Wenzel et al.41 present explicit expressions for magneto-
optic interference and diffraction effects which can be ap-
plied to arbitrary thin-film systems and to arbitrary magne-
tization patterns.

• The light diffracted by the spacing between the stripes will
also contribute to the Bragg-MOKE signal. In Ref. 42
Schmitte et al. studied the interference between light dif-
fracted by the not ferromagnetic substrate and a ferromag-
netic Ni stripe array. The interference leads to a modifica-
tion of the observed Kerr rotation much in the same way as
antireflection coatings on thin films help to increase the
magneto-optical contrast in Kerr microscopy.

• In Ref. 18 the authors investigated the magnetization re-
versal of a spin-valve structure: Co stripes on Fe�001�. The
results show an enhanced Kerr rotation in the spin-valve
regime. This behavior is due to an increasing amplitude of
the light diffracted by the Co grating compared to the Fe
grating. Furthermore, hysteresis of odd and even orders of
diffraction is significantly different, which can be under-
stood on the basis of the existence of edge domains.

• The investigation of a complex domain structure with vec-
tor and Bragg-MOKE is reported in Refs. 15 and 43. The
authors studied the remagnetization process of triangular
Fe rings. Triangular structures have a sixfold magnetic
shape anisotropy. The geometry of this structure leads to
more possibilities of the remagnetization process accord-
ing to the orientation of the structure to the applied mag-
netic field. It is possible to tailor the remagnetization
process by changing the size of the triangular rings or by
introducing asymmetries. The vector and Bragg-MOKE re-
sults agree with micromagnetic simulations and magnetic
force microscopy images.

Further examples where the Bragg-MOKE technique is used
for the investigation of the remagnetization process can be
found in Refs. 44 and 45 �square and elliptical holes in an Fe
film�, Ref. 46 �an array of Permalloy dots�, Refs. 47 and 48
�Fe stripes�, and Ref. 49 �Co microsquare array�.

This list of references shows that the Bragg-MOKE tech-
nique is widely used for the investigation of the remagneti-
zation process in lateral magnetic structures. Bragg-MOKE
can easily be performed. In principle, it is possible with any
standard MOKE setup as long as the diffraction spots from
the lateral structure can be guided into the detector.

B. Experimental setup

Bragg-MOKE is measured like for most common dif-
fraction experiments in the Fraunhofer diffraction geometry.
The laser, the sample, and the magnet are mounted on a
goniometer such that the angle of the incident beam and the
reflected beam can be varied between −60° and 60° with
respect to the surface normal. For the Bragg-MOKE study
the angle of incidence is usually set to �=0° �perpendicular
incidence� ensuring a symmetrical diffraction pattern. The
structured sample is orientated with the normal of the surface
in the plane of incidence and with the external magnetic field
parallel to the surface. The Kerr effect is measured in the
longitudinal configuration with s-polarized light. In the next
paragraph a theoretical expression of the Bragg-MOKE in
longitudinal Kerr geometry is given. To distinguish between
diffracted beams lying in the plane of incidence and the ones
perpendicular to that plane, we label the in-plane diffracted
beams with h0, the out-of-plane ones 0k �see Fig. 5�. The
combined hk diffracted beams are not considered here.

C. Theoretical treatment

An exact expression for the electric field vector at point
P far removed from the surface S of a grating illuminated by
an incident plane wave is given by the Stratton-Silver-Chu
integral50

E�P� = A�� 
 �
S
�n 
 E� −

n2

���
�� 
 �n 
 H���


exp�ık��� − �� · r�dS , �16�

where � and �� are unit vectors in the direction of propaga-
tion of the incident and scattered waves, respectively, and
E� and H� are the electric and magnetic field vectors at point
r on the surface where the local normal is n. Finally,
k=2� /� and A= ık exp�ıkR0� / �4�R0�, �� and n2 are the per-
meability and refractive index of the immersion medium,
respectively, and R0 is the distance from the origin to the
field point P. The physical-optics approximation assumes
that the E and H fields at any point on the surface S are the
same as they would be if that point were part of an infinite
tangent plane. Therefore the Fresnel reflection formulas are
assumed to hold locally at each point with the angle of inci-
dence taken to be that between the incident wave vector and
the normal one.50

FIG. 5. Sketch of the diffraction pattern and nomenclature of the diffracted
beams. Intermediate diffracted beams are not taken into account.
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In the following, it is assumed that the diffraction is
caused by a groove grating, i.e., only the diffraction in the
plane of incidence is taken into account. This simplifies the
problem considerably. In principle, the approach in Eq. �16�
can be used for explaining the Bragg-MOKE signal at dif-
fraction spots outside the plane of incidence. But this is not
an exact solution of the problem of scattering of light of p
and s polarizations by a diffraction grating as we use the
physical-optics approximation. We will show that there is
agreement between some features of the theory and experi-
ment. Our aim is not to calculate exact magnitudes but to
show the origin of the measured Bragg-MOKE signals in
longitudinal Kerr geometry. Therefore, we will later on treat
for our samples unknown coefficients as adjustable param-
eters to keep the problem simple.

In Fig. 6 the directions and angles are defined. �x ,y ,z� is
a right-handed Cartesian coordinate system with x running
parallel to the grooves and z normal to the mean surface
level. �s , t ,n� is a right-handed mutually orthogonal set of
unit vectors defined at each point with position vector r on
the surface of the grating where s and t are parallel to the
rulings and tangent to the groove profile, respectively, and
n=s
 t is the local unit normal. � and �h0� are unit vectors in
the direction of the propagation of the incident and hth
diffracted waves, respectively. � and �h0� are the angle of
incidence and the angle of diffraction of the hth order,
respectively, and � is the local angle of incidence. The direc-
tions of polarizations s, p, and ph0� follow the usual conven-
tions. At the interface the normal components of D and B as
well as the tangential components of E and H are continu-
ous. Since B=�H=n����
E� and D=�E, these relations
lead to the following conditions at the interface:

���E + E�� − ��E�� · n = 0, �17�

�n1
���� 
 E + �� 
 E�� − n2

������ 
 E��� · n = 0,

�18�

�E + E� − E�� 
 n = 0, �19�

� n1

��
�� 
 E + �� 
 E�� −

n2

���
��� 
 E��� 
 n = 0, �20�

where n is the normal vector, � the dielectric tensor, and
the permeability for the alternating magnetic field of the

light wave is set to 1, �=��=1 �this is a reasonable approxi-
mation in the visible range of light�. After simple vector-
algebraic manipulations the quantities in the integrand of
Eq. �16�, involving the field vectors, the relations of
Eqs. �17�–�20�, and the electric field vectors as defined in
Fig. 6, become for the p polarization and s polarization,
respectively:

n 
 E� = sEp�rpp cos��h0� + �h0� � − cos �� + tEprsp, �21�

n2

���
n 
 H� = − sEprsp cos��h0� + �h0� � + tEp�rpp + 1� ,

�22�

n 
 E� = sEsrps cos��h0� + �h0� � + tEs�rss + 1� , �23�

n2

���
n 
 H� = − sEs�rss cos��h0� + �h0� � − cos �� + tEsrps.

�24�

Here Ep and Es are the field amplitudes of the incident wave
of the respective polarizations, and rij are the local Fresnel
reflection coefficients. Carrying out the various vector mul-
tiplications involved, the electric fields of the hth order for
both polarizations can be written as

Es,h0� = − AEs�
S

�s�cos��h0� + �h0� ��2rss + 1� − cos ��

+ ph0� �2rps cos��h0� + �h0� ���exp�ık��h0� − �� · r� ,

�25�

Ep,h0� = − AEp�
S

�ph0� �cos��h0� + �h0� ��2rpp + 1� − cos ��

+ s�2rsp cos��h0� + �h0� ���exp�ık��h0� − �� · r� .

�26�

The scattered electric field is pointing along the directions
predicted by the grating equation

sin �h0� = sin � −
h�

d
, �27�

with h=0, ±1±2, . . ., the grating period d, and the incident
laser beam wavelength �. In the Bragg-MOKE measure-
ments the incident laser beam is s polarized, i.e., Ep=0.
Thus, only Eq. �25� has to be taken into account. This equa-
tion already shows that the incident linear s polarization is
changed into a polarization containing s and p components
after reflection. This is due to the reflection coefficient rps

which is proportional to the magneto-optical constant Q and,
finally, to the magnetization. For simplicity, the terms of the
integrand are abbreviated as

Es,h0� = − AEs�sEss,h0� + ph0� Eps,h0� � . �28�

The term Ess,h0� only depends on the reflection coefficient rss,
and the term Eps,h0� contains only the reflection coefficient
rps. In a linear approximation as considered in this case, the
reflection coefficient rss is not affected by the magneti-
zation.51 Thus, Eq. �25� can be split into a nonmagnetic part

FIG. 6. Definitions of the various directions and angles mentioned in the
text.
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and a magnetic part. In the MOKE setup described above the
diffracted laser beam passes a Faraday modulator and an
analyzer, which is in crossed position to the incident
s-polarized light, before it hits a photodiode. The Faraday
modulator leads to an oscillation of the polarization plane,
with an oscillation angle �=�0 sin�2��t� as described in
Sec. II. The electric field Ed at the photodiode is

Ed = �Ess,h0� sin � + Eps,h0� cos �� . �29�

The detecting photodiode measures the intensity of the light
beam after the analyzer, I= 
Ed
2. Ess,h0� corresponds to the
nonmagnetic part and Eps,h0� to the magnetic part. Since the
amplitude of the oscillation is �0	2°, the term with Eps,h0�
dominates. The integral

Eps,h0� = �
S

�2rps cos��h0� + �h0� ��exp�ık��h0� − �� · r�dS

�30�

corresponds to the magnetic form factor in Eq. �14�. The
information about the magnetization is given by the reflec-
tion coefficient rps. In our case of a rectangular shape profile,
the term with �h0� +�h0� is constant at the surface of the
magnetic structure and can be taken in front of the integral.
Therefore the measured intensity can be expressed by
Eq. �15� like in the case of the transverse Kerr geometry.14

The same formalism which explains the Kerr signal mea-
sured at the diffraction spots in transverse Kerr geometry in
Ref. 46 can also be used in longitudinal Kerr geometry. The
present approach starting from the Stratton-Silver-Chu inte-
gral in Eq. �16� has the advantage that it takes into account
arbitrary shapes of the lateral structure, the differences in
height leading to a geometrical phase shift, and the effects
according to different materials at the surface of the lateral
structure, e.g., if ferromagnetic Fe elements are set on top of
a homogeneous Co film as in Ref. 18.

The Bragg-MOKE technique, which is well established
in transverse Kerr geometry, is not restricted to this geom-
etry. The Bragg-MOKE measurements in the longitudinal ge-
ometry are equivalent to those in the transverse geometry
and can be interpreted with the same formalism. It is up
to the choice of the experimenter which Kerr geometry is
used. One advantage of the longitudinal geometry is the pos-
sibility to combine vector MOKE with Bragg-MOKE with-
out changing the measurement geometry. As the absolute
Kerr rotation and not the relative intensity change is mea-
sured, the longitudinal Kerr effect can be used for vector
magnetometry where the results of the both vector compo-
nents can be compared qualitatively and quantitatively. There
are also disadvantages using the longitudinal Kerr effect, for
example, additional second-order effects may complicate the
interpretation of the observed hysteresis loops. On the other
hand, nonlinear magneto-optic effects can easily be cor-
rected, as shown in Sec. VI.

The use of off-specular diffracted beams for magneto-
optical measurements has also some technical advantages.
The Kerr amplitude in saturation can be increased by choos-
ing high order of diffraction, but this gain is paid by a strong
decrease in intensity. Bragg-MOKE acts like a filter because

only signals from the grating can pass. On the other hand
light diffracted by the spacing between the grating elements
also contributes to the total signal. The interference between
light diffracted by the nonferromagnetic substrate and the
ferromagnetic structure elements may lead to modifications
of the observed Kerr signal.

Finally, it is possible to combine Bragg-MOKE with
vector MOKE measurements at higher order diffraction
spots. In Sec. III vector MOKE has been introduced for mea-
surements at the specular reflected spot. If sample and field
are orientated for a vector MOKE measurement of the x
component, the Kerr signal measured at the diffraction spots
will reflect the magnetic form factors of the magnetization
component mx,

fhk
m�x� = �

S

mx�r�exp�ıGhk · r�dS , �31�

where Ghk ·r=hx /dx+ky /dy, x and y are the components of
the vector r, dx and dy are the periodicities of the lateral
structure parallel and perpendicular to the plane of incidence,
and h and k are the diffraction orders of the beams lying in
the plane of incidence and perpendicular to the plane, respec-
tively. In the second case where sample and field are orien-
tated for a vector MOKE measurement of the y component,
the measured signal at the spots will reflect the magnetic
form factors of the magnetization component my,

fhk
m�y� = �

S

my�r�exp�ıGhk · r�dS . �32�

The combination of both techniques provides a wealth of
information about the remagnetization process and gives a
much deeper insight than a standard longitudinal Kerr hys-
teresis measurement alone. Form factors obtained from dif-
fraction spots lying in the scattering plane, fh0

m , are different
from form factors from diffraction spots perpendicular to the
scattering plane, f0k

m . In principle it is possible to obtain the
two form factors fh0

m and f0k
m simultaneously using two detec-

tors. For example, if sample and field are orientated for the
case that the magnetization component mx is measured, then
from the higher order diffraction spots lying in the scattering
plane the form factor fh0

m�x� is obtained and the form factor
f0k

m�x� will be measured at the higher order diffraction spots
perpendicular to the scattering plane. Rotating sample and
field by 90° allows to measure the form factors for the mag-
netization component my.

V. BRAGG-MOKE SIMULATIONS

In this section the Bragg-MOKE effect for some stan-
dard configurations is simulated. As pointed out above the
hysteresis measurement at the lth order of diffraction corre-
sponds to the lth Fourier component of the magnetization
distribution �l=h ,k�. In the following the real and imaginary
parts of the magnetic form factor calculated using Eqs. �31�
and �32� are presented as a function of the magnetic field for
some cases of present interest.
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A. Circular islands with vortex state

Here we consider a model for the remagnetization
process of circular dots via a vortex state at remanence.
In the micromagnetic simulation performed with the soft-
ware OOMMF 1.2A3,52 the material parameters for Permalloy
are chosen: saturation magnetization Ms=860
103 A /m,
exchange stiffness A=13
10−12 J /m, anisotropy constant
K1=0, and damping coefficient �=0.5. The circular dot has a
diameter of 0.8 �m and a thickness of 60 nm, and it is dis-
cretized into quadratic cells of 10 nm side length.

In Fig. 7 the ascending branch of the hysteresis loop and
selected magnetization profiles are depicted. As it is typical
for an ideal vortex configuration, the y component of the
magnetization is zero. Coming from negative saturation field
�1� to point �2� the core of the vortex develops abruptly at the
nucleation field HN=−50 Oe. In the remanent state �3� the
core has moved into the center of the circular dot. Increasing
further the field leads to a movement of the core to the upper
edge �4�, and again the core vanishes abruptly at the extinc-
tion field He=90 Oe �step in the hysteresis loop between �4�
and �5��. Figure 8 shows the real and imaginary parts of the
magnetic form factor fhk

m , either h=1,2 ,3 or k=1,2 ,3, for
the x and y components of the magnetization; only the as-
cending branch is depicted. Since the circular dots are set on
a square lattice with periodicities dx=dy =1.6 �m the diffrac-
tion pattern is a two-dimensional one. For each magnetiza-
tion component the form factors are obtained from the hth
diffraction order lying in the plane of incidence as well as
from the kth diffraction order perpendicular to the plane of
incidence. As can be seen in these plots the magnetization
component as well as the specific diffraction order has a
strong influence on the behavior of the real and imaginary

parts of fhk
m . The plots for mx obtained at the diffraction spots

h are similar in shape: the real part of all form factors is
similar to the hysteresis curve in Fig. 7, and the imaginary
part is zero. At the diffraction spots k the shape of the form
factors for mx changes with the diffraction order. The real
part and the imaginary part are unequal to zero. The plots
show for higher diffraction orders more oscillations in the
field region where the vortex moves through the dot. Either
the real or the imaginary form factor passes through the ori-
gin. This is true for all cases where the periodicity is an
integer multiple of the diameter.

One central and challenging task of Bragg-MOKE is
the determination of the chirality of the vortices inside of
the magnetic dots �here, chirality is used in the meaning of
the rotational sense of the vortex�. In fact, the chirality can
be determined from the sign of the real and imaginary form
factors of kth diffraction order at positions perpendicular to
the scattering plane. This behavior is displayed in Fig. 9.
The left panel shows the form factor for the case of counter-
clockwise vortex chirality, and the middle panel for the
clockwise chirality. The sign of the real part of the form
factor is preserved, and the sign of the imaginary part
changes. The change in chirality corresponds to a change in
sign of the position component y and magnetization compo-

FIG. 7. �Color� Ascending branch of the hysteresis loop for the x �black
line� and the y component �gray line� of the magnetization, and some se-
lected calculated magnetization profiles.

FIG. 8. Real �black lines� and imaginary �gray lines� form factors for the x
�left panel� and the y component �right panel� calculated for the periodicities
dx=dy =1.6 �m.

FIG. 9. Real �black lines� and imaginary �gray lines� form factors for coun-
terclockwise and clockwise vortex chiralities obtained at kth diffraction or-
ders �h=0�. Note that the chirality follows from the out-of-plane reflections.
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nent my; y→−y, my→−my. This is easy to understand be-
cause the form factors are odd functions concerning the mag-
netization. Concerning the phase factor the real part
corresponds to an even function and the imaginary one to an
odd function. Assuming that the factor Al in Eq. �15� does
not change sign, the hysteresis curve will behave different
for different vortex chiralities. For the sake of completeness
the right panel in Fig. 9 shows the form factor for the coun-
terclockwise chirality at the negative diffraction order k. The
relative sign of the imaginary parts also depends on the sign
of the diffraction order.

In Fig. 8 the form factors of the my component are also
depicted. The form factors of all diffraction orders k are zero
as the y component of the hysteresis curves is zero. In the
diffraction order h only the imaginary part is unequal to zero.
For k=3 a sharp peak is observed at the field where the
vortex core develops �point 2 in Fig. 7�. This behavior can be
explained with the nature of the form factor. The magnetic
form factor corresponds to a Fourier transformation of the
magnetization configuration. Thus, it becomes more sensitive
to the domain configuration at the sample edges with higher
order h ,k.

Bragg-MOKE hysteresis curves of circular islands with
vortex state are discussed in the work of Grimsditch et al.46

using the Kerr effect in transverse geometry and—in more
detail—in the work of Lee et al.53 using the longitudinal
Kerr geometry. Lee et al. investigated the Bragg-MOKE
signal of Permalloy dots �diameter of 0.8 �m� at the dif-
fraction spots �0k� for both magnetization components mx

and my and at the diffraction spots �h0� for the magnetization
component mx. The measurements reflect the behavior of
the Bragg-MOKE curves discussed in this paper very well.
For a detailed description the reader is referred to the above-
mentioned reference.

Finally, in an array of dots, which is one prerequisite for
Bragg-MOKE experiments, the vortex state of the magneti-
zation will not show the same chirality in all dots. In prin-
ciple, in an array of ideal circular dots the vortex chirality
should be 50% clockwise and 50% counterclockwise during
the remagnetization process. In such a case the Bragg-
MOKE signal will not contain any information about the
chirality because this measurement technique integrates over
the magnetization of all dots illuminated by the laser beam.
But in reality, the fabrication of ideal circular dots is difficult.
Real dots have more or less asymmetries influencing a
defined chirality of the vortex state. This will lead to the
situation that one chirality dominates and a well defined
Bragg-MOKE signal can be measured. If a strong asymmetry
is introduced in the dots �e.g., a flat edge54� the magnetiza-
tion will show the same chirality in all dots during the re-
magnetization process.

B. Edge domains in ferromagnetic stripes

In the next example the remagnetization process of a
ferromagnetic stripe orientated with the hard axis magnetiza-
tion parallel to the field is discussed. It is assumed that
the stripe is infinitely long in the y direction. In the micro-
magnetic simulation the stripe is required to have a finite
length, which is compensated for by assuming a high aspect

ratio. For the simulation the material parameters of Fe are
chosen: saturation magnetization Ms=1700
103 A /m,
exchange stiffness A=21
10−12 J /m, anisotropy constant
K1=48
103 J /m3, and damping coefficient �=0.5. The
stripe has a length of 200 �m, a width of 2 �m, and a thick-
ness of 50 nm, and it is discretized into quadratic cells of
100 nm side length.

Figure 10 shows the ascending branch of the zeroth-
order hysteresis loops for both the x and the y component of
the magnetization. Like for the vortex the y component of
the magnetization is not affected during the reversal process.
On the average the magnetization component my cancels out.
The x component shows a typical hard axis behavior. Com-
ing from negative saturation field �1� first domains develop at
the edges of the stripe �2�. In the magnetization profile at
point �3� edge domains with the magnetization directions
along the stripe are formed, whereas the magnetization
points into opposite direction at the opposite edges. The area
between the edges breaks up into domains with a net mag-
netization parallel to the field. In Fig. 11 the real and imagi-
nary form factors of the x component for h=1–6 are de-
picted for two different periodicities dx=4 and 5 �m. As the
diffraction pattern from the stripe array is one dimensional,
only the form factors of the magnetization component mx are
taken into account, which are lying in the scattering plane. In
the first case with dx=4 �m the shape of the form factors
repeats in the different orders h, one of the form factors,
either the real or imaginary part is always nearly zero. At
the odd orders the form factor curves equal the hysteresis
curve, at the even orders the form factor curves show an N
shape. The maximum occurs in the field region where the
domains between the edges develop and the minimum in
the field region where they vanish. In the second case with
dx=5 �m both the real and the imaginary form factors

FIG. 10. �Color� Ascending branch of the hysteresis loop for the x �black
line� and the y component �gray line� of the magnetization, and some se-
lected calculated magnetization profiles.
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contribute to the Bragg-MOKE signal. In principle the form
factors behave like the hard axis hysteresis loop. The form
factor curves at h=2 show overshoots at the field values
where the N-shape form factor curve of h=5 has its maxi-
mum and minimum which are at the same field values as
for dx=4 �m. Drastic changes of the form factor and de-
velopment of an N shape occur whenever the relation
hd=zw is fulfilled with h the order of the form factor, d the
periodicity, w the width of the stripe width, and z an integer
number. This behavior agrees with the observation and mea-
surements discussed in Ref. 17. The authors investigated
the Bragg-MOKE signal at the �h0� diffraction spots of a
two-dimensional periodic array �periodicity of 6 �m in
one direction and 42 �m in the orthogonal direction� of two
separated polycrystalline Fe rectangles, both being 30 �m
long, one having a width of 0.9 �m and the other one of
1.9 �m. An example of the results is given in Fig. 12.
It shows the measured and calculated Bragg-MOKE at the
diffraction spots �30�. The N shape of the hysteresis curve

is clearly visible. In this case the relation hd=zw with h=3,
d=6 �m, and w=4.5 �m is fullfilled with z=4.

C. Coherent rotation

In the third example a coherent rotation of the magneti-
zation is considered. The easiest way to investigate this
process is the use of a Stoner-Wohlfarth model.55 The mini-
mization of the following energy term leads to the magneti-
zation components mx and my for a given applied field H:

E = − MsatH cos � + 1
4K sin2�2�� + 45 ° �� , �33�

where � is the angle between the x axis and the magnetiza-
tion vector, therefore mx=cos � and my =sin �. The energy
term describes a sample with a fourfold anisotropy where
the hard axis direction is parallel to the x axis. The calcula-
tion has been performed with reduced anisotropies K=1 and
K=0.5 and saturation magnetization Msat=1 in the field re-
gion between H=−4 and 4.

The ascending branches of typical hysteresis loops of the
x and y components for the coherent rotation process are
depicted in Fig. 13. The step in the hysteresis indicates the
sudden change in the direction of the magnetization vector
which can be easily seen in the plots of the magnetization
path �my −mx plots on the right side of Fig. 13�. Assuming
that the coherent rotation process takes place in squares with
a side length of w=1 �m arranged in a square array with
periodicities of dx=dy =2 �m or dx=2.5 �m and dy =3 �m
different behaviors in the real and imaginary form factors are
observed �see Figs. 14 and 15�. For the case that the period-
icity is equal in the x and y directions �Fig. 14�, either the
real or the imaginary form factor is zero. At odd diffraction
orders the real part is zero, at even diffraction orders the
imaginary part of the magnetic form factor is zero. The form
factors of mx obtained from the diffracted beams of order h
and k equal to the hysteresis curve of mx measured at the
specular beam in Fig. 13. The form factors of my behave in
the same manner concerning my in the hysteresis curve.
Thus, a remagnetization process via coherent rotation is rep-
resented by order-independent hysteresis loops due to the
nature of the Fourier transformation.

The change in the anisotropy constant K affects on the
one hand the coercive field strength and on the other hand

FIG. 11. Real �black lines� and imaginary �gray lines� form factors for the x
component calculated for two different periodicities dx as indicated in the
figure �left panel: dx=4 �m, right panel: dx=5 �m� and for different orders
h0 of diffraction.

FIG. 12. Measured �left� and calculated �right� Bragg-MOKE hysteresis
curves of rectangular Fe islands described in Ref. 17. Only the diffraction
order �30� is shown as an example. The hysteresis curves have been normal-
ized to saturation magnetization. Solid �dashed� line represents increasing
�decreasing� magnetic field.

FIG. 13. The left plots show the ascending branch of the hysteresis loops
both for the x �black line� and and the y component �gray line� of the
magnetization. The right plots show the y component of the magnetization
as a function of the x component; thus, the plots describe the path of the
magnetization vector. The calculations are performed for two different an-
isotropy values, K=1 �top panel� and K=0.5 �bottom panel�. For further
explanations the reader is referred to the text.
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the shape of the hysteresis curve of the y component. The
reason is visible in the my −mx plots in Fig. 13: in the first
case �K=1� the magnetization vector rotates only in the up-
per part of the plot, i.e., the y component of the magnetiza-
tion does not change sign. In the second case �K=0.5� the
magnetization vector switches more around and changes the
sign in the y component during the reversal process.

For the case of different periodicities dx and dy �Fig. 15�
both form factors contribute. The shape of the form factor
curves equals for all orders the hysteresis curves in Fig. 13.
This behavior agrees with the observations and measure-
ments discussed by Remhof et al. in Ref. 56. The authors
investigated hysteresis curves at diffraction spots h0 of an
array of polycrystalline, rectangular Permalloy islands with a
lateral size of 0.3
3 �m2 �thickness of 25 nm� setting in a
square grid with a periodicity of 5 �m. As the Permalloy
islands were prepared to be single domain particles the ex-
pected coherent rotation of the magnetic moments toward the
easy axis given by the shape anisotropy of the islands, i.e.,

parallel to the long axis of the islands, is manifested in order-
independent hysteresis loops.

D. Concluding remarks

Depending on the process which dominates the remag-
netization, the form factors and thus the diffraction hysteresis
loops can adopt different shapes. But there are general prop-
erties to be noted.

• In the case of coherent rotation the form of the diffraction
hysteresis loops of order h�0, k�0, equals the hysteresis
loop measured at the specular spot h=k=0.

• The form factor curves show steps and overshoots if the
domain configuration changes drastically, e.g., if new do-
mains appear or the magnetization directions change
abruptly.

• The periodicity of the lateral structure has an effect on the
interplay between the real and the imaginary form factor.

• In the example with the ferromagnetic stripe array the dif-
fraction hysteresis loop shows an amplified N-shape be-
havior if the product of the stripe width w and the order h
is a multiple integer of the periodicity d: zd=hw.

VI. SECOND-ORDER MOKE

As discussed in the previous sections, longitudinal Kerr
magnetometry is an easy method for the characterization of
the magnetization reversal in thin films. One of the draw-
backs of this method is the occurrence of asymmetries in the
Kerr hysteresis loops,57–59 in contrast to transverse Kerr mag-
netometry. These asymmetries derive mainly from higher or-
der contributions in the Kerr rotation which complicate an
easy interpretation. On the other hand the optical setup can
also play a role. The asymmetries are caused by second-order
terms of the dielectric tensor �.60 The second-order terms
describe the inherent dielectric properties of the magnetic
film, from which follows that they are quadratic in the mag-
netization. The microscopic source of the asymmetry in the
magneto-optic response is a second-order term in the spin-
orbit interaction. The asymmetry is in many cases observed
in magnetic films with in-plane anisotropy.26

Nevertheless, the quantitative determination of the so-
called Voigt-effect contribution to the longitudinal Kerr ef-
fect can easily be done by measuring the longitudinal Kerr
signal of a saturated sample with a rotating magnetic field.61

The Voigt-effect contribution is also called quadratic
MOKE62 or second-order MOKE contribution.26 It becomes
the only important term in case of normal incidence.

In experiments a saturation field should be applied which
is considerably stronger than the anisotropy field strength
HK. If the applied field is now rotated, the direction of the
magnetization of the sample points, at least in the limit of an
infinite magnetic field, in the direction of the field. Therefore
a coherent magnetization reversal is realized �like the Stoner-
Wohlfarth behavior�, avoiding all problems caused by hys-
teresis effects. The Kerr signal �K is recorded as a function of
the field rotation �. Here, the zero point of the rotation cor-
responds to the longitudinal axis of the experimental setup.
In Ref. 26 the authors included second-order terms in the

FIG. 14. Real �black lines� and imaginary �gray lines� form factors for the x
�left panel� and the y component �right panel� calculated for the periodicities
dx=dy =2 �m and the anisotropy constants K=0.5.

FIG. 15. Real �black lines� and imaginary �gray lines� form factors for the x
�left panel� and the y component �right panel� calculated for the periodicities
dx=2.5 �m and dy =3 �m and the anisotropy constants K=1.
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dielectric tensor of a cubic crystal resulting in mxmy terms for
the second-order effects and longitudinal geometry. In Ref.
59 fits to MOKE data in the longitudinal geometry prove that
the Kerr signal can be described effectively by

�K = �0 + q cos � + b cos � sin � + c sin2 � , �34�

where � is the angle between the magnetization vector and
the longitudinal axis �see Fig. 16�, q, b, and c are parameters
which depend on the optic geometry �e.g., polarization angle,
incident angle� and the dielectric tensor of the material,27,58

and �0 is the magnetization independent magneto-optical ac-
tivity of the sample. Equation �34� is a general description
for second-order contribution. In the case of a very large
rotating field the angle � is identical to the angle � which
describes the rotation of the field. Then,

mx = cos �, my = sin � . �35�

Performing vector MOKE, sin � and cos � have different
meanings depending on what component of the magnetiza-
tion vector is under investigation. From the sketches in
Figs. 4 and 16 it can be seen that for the x component
�K=�x and the terms are identified to

mx = cos �, my = sin � �36�

and for the y component �K=�y,

mx = sin �, my = cos � . �37�

If second-order effects influence the shape of Bragg-
MOKE curves, calculated and measured ones can be com-
pared using Eq. �34�. With the additional terms the shape of
the measured hysteresis can be reproduced from the micro-
magnetic simulations by taking the results for mx and my

from the micromagnetic simulations and fitting them to the
measured hysteresis data. An example using this method can
be found in Ref. 15.

Now we return to the determination of second-order ef-
fects. From the measured �K��� values a FFT can be per-
formed to determine amplitude and phase of the �n�� terms.
From the result of the FFT the contributions of the linear
and second-order effect to the measured Kerr signal can be
distinguished.

The Kerr magnetometry with the rotating magnetic field
of constant amplitude can also be used to determine the an-
isotropy field strength and their symmetry axis distribu-
tion. This technique is called the ROTMOKE method,63

examples can be found in Refs. 64–67. It is also used in the
transverse Kerr geometry and called magneto-optical torque
technique.68–70

VII. SUMMARY

Lateral micro-or nanosized magnetic structures work as
diffraction gratings: illuminating the structure with the laser
beam of a MOKE setup leads to an interference pattern. The
Kerr signals measured at the diffraction spots gain informa-
tion about the domain configuration in the elements �Bragg-
MOKE�. Furthermore, the MOKE technique can be used to
obtain vectorial information of the magnetization process
�vector MOKE� both at the specular spot and the higher or-
der diffraction spots. The vector MOKE technique is an ex-
tension of the standard longitudinal Kerr effect. A field ap-
plied in the transverse geometry, i.e., perpendicular to the
scattering plane, allows the determination of the two or-
thogonal components of the magnetization vector in two suc-
cessive measurements at the specular spot. At the higher or-
der diffraction spots the vector MOKE signal contains
information of the magnetic form factors of the two orthogo-
nal magnetization components. Both techniques were de-
scribed in detail in this paper and several examples were
given. Vector and Bragg-MOKEs allow a deeper insight in
the remagnetization process of micro- and nanostructured
ferromagnetic elements. The measurement of a standard hys-
teresis loop in the usually used MOKE technique, i.e., a hys-
teresis loop obtained in longitudinal Kerr geometry at the
specular spot, contains only the information on the mx com-
ponent of the magnetization vector integrated over the region
illuminated by the laser beam. With this information it is not
possible to characterize the remagnetization process in detail,
e.g., one could not distinguish between domain formation
and coherent rotation of the net magnetization vector. Differ-
ences in the remagnetization process are visible in the Bragg-
MOKE signal of the mx and my components of the magneti-
zation vector because the Bragg-MOKE technique is
sensitive to the inner domain configuration in the lateral
structure, and standard Kerr hysteresis loops only measure
the net magnetization of the mx component.

For the interpretation of the measured data it is neces-
sary to perform micromagnetic simulations using, for ex-
ample, the public domain software of the object orientated
micromagnetic framework �OOMMF 1.2A3� project at ITL/
NIST. The micromagnetic simulation yields magnetization
profiles of a lateral structure for different field values and,
thus, information on the domain configuration. With the
magnetization profiles it is possible to calculate the magnetic
form factor and to reconstruct the measured Bragg-MOKE
hysteresis loops. If the calculated hysteresis loops agree with
the measured Bragg-MOKE ones both for the mx component
and the my component of the magnetization vector, the re-
sults of the micromagnetic simulation are reliable and reflect
the remagnetization process of the lateral structure.

MOKE is an integrating technique, i.e., the average net
magnetization of the illuminated area is measured. Assuming
that the single elements of a lateral structure do not influence
each other by stray field coupling, the Kerr signal contains
the information on an average remagnetization process in the
elements. In this case it is sufficient to take one single ele-
ment into account for the micromagnetic simulation. For a
lateral structure where the single elements communicate by

FIG. 16. Definition of the angles � and � with respect to the longitudinal
and vertical axes.
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stray field coupling, a larger section with an adequate num-
ber of elements has to be considered in the micromagnetic
simulation. Depending on the size this will limit the accuracy
of the simulation because of restricted computational power.

There are many other examples which underline the user
friendly and successful aspects of the Kerr magnetometry:
ac-MOKE allows to measure the ac susceptibility of ferro-
magnetic thin films,71 the transverse bias inverse initial
susceptibility and torque method allows the simultaneous
determination of the torque and the initial inverse suscep-
tibility resulting in the determination of the magnetic aniso-
tropy energy,72 or one can measure the magnetic anisotropy
with the modulated field magneto-optical anisometry tech-
nique,73 with Kerr microscopy it is possible to image domain
pattern in real space.74
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